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This is Paper I of a series on high-frequency scattering of a scalar plane wave by a transparent sphere 
(square potential well or barrier). It is assumed that (ka)t » 1,IN - Ilt(ka)t » I, where k is the wave­
number, a is the radius of the sphere, and N is the refractive index. By applying the modified Watson 
transformation, previously employed for an impenetrable sphere, the asymptotic behavior of the exact 
scattering amplitude in any direction is obtained, including several angular regions not treated before. 
The distribution of Regge poles is determined and their physical interpretation is given. The results are 
helpful in explaining the reason for the difference in the analytic properties of scattering amplitudes for 
cutoff potentials and potentials with tails. Following Debye, the scattering amplitude is expanded in a 
series, corresponding to a description in terms of multiple internal reflections. In Paper I, the first term of 
the Debye expansion, associated with direct reflection from the surface, and the second term, associated 
with direct transmission (without any internal reflection), are treated, both for N > 1 and for N < 1. 
The asymptotic expansions are carried out up to (not including) correction terms of order (ka)-·. For 
N > I, the behavior of the first term is similar to that found for an impenetrable sphere, with a forward 
diffraction peak, a lit (geometrical reflection) region, and a transition region where the amplitude is 
reduced to generalized Fock functions. For N < I, there is an additional shadow boundary, associated 
with total reflection, and a new type of surface waves is found. They are related to Schmidt head waves, 
but their sense of propagation disagrees with the geometrical theory of diffraction. The physical interpreta­
tion of this result is given. The second term of the Debye expansion again gives rise to a lit region, a 
shadow region, and a Fock-type transition region, both for N > 1 and for N < 1. In the former case, 
surface waves make shortcuts across the sphere, by critical refraction. In the latter one, they excite new 
surface waves by internal diffraction. 

1. INTRODUCTION 

This is the first in a series of papers dealing with 
the scattering of a plane wave by a transparent sphere 
at high frequencies. [A preliminary account of this 
work! and a survey of the main results2 have already 
been given.] The assumptions are 

of N, to account for absorption, should not be unduly 
difficult. 

As a rule, we shall also exclude 

N»I, N«I, (1.3) 

although the results can be at least partially applied 
in these cases. The reason for the second limitation in 
(Ll) will be discussed in Sec. 2. We note here that it {Ji» 1, IN - 11~ {Ji» 1, (Ll) 

where 
{J = ka (1.2) 

is the dimensionless parameter associated with the 
wavenumber kand the radius a of the sphere, and Nis 
the refractive index. 

The lower limit on {J for which the results are 
applicable depends on the degree of accuracy desired. 
It is hoped that they provide useful quantitative 
information down to {J '"'-' 100 and at least qualitative 
information down to {J '"'-' 10. 

The sphere is assumed to be perfectly transparent, 
so that N is real. Both N > 1 and N < 1 are con­
sidered, but more attention is devoted to the former 
case. Additional limitations on N will be set in 
Paper IJ.3 Extension of the results to complex values 

1 H. M. Nussenzveig, Bull. Am. Phys. Soc. 11, 372 (1966). 
2 H. M. Nussenzveig, to appear in Proceedings of the Theoretical 

PhYSics Conference for R. E. Peierls's 60th Birthday. . 
3 H. M. Nussenzveig, J. Math. Phys. 10, 125 (1969) (followmg 

paper), to be referred to hereafter as II. 
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implies 
21N - 11 {J» {Ji » 1, (1.4) 

where the left-hand side is the phase shift of a central 
ray going through the sphere. This excludes the 
domain of Rayleigh-Gans scattering (where the Born 
approximation is applicable) and part of the anoma­
lous diffraction region. The terminology is explained 
in Van de Hulst's beautiful book (Ref. 4, p. 133). 
In Van de Hulst's chart of the N-{J domain (Ref. 4, 
Fig. 20), the region we treat corresponds to the right­
hand side of the square, excluding the neighborhood 
of the corners. 

For the sake of simplicity, we discuss only the 
scattering of a scalar field in the first two papers of 
this series. The whole treatment can be extended to 
electromagnetic scattering, as will be shown in the 
third paper.s 

• H. C. Van de Hulst, Light Scattering by Small Particles (John 
Wiley & Sons, New York, 1957). 

5 H. M. Nussenzveig (to be published); hereafter referred to as III. 
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SCATTERING BY A TRANSPARENT SPHERE. I 83 

The scalar wavefunction may be interpreted either 
as the velocity potential of sound waves or as the 
Schrodinger wavefunction in quantum mechanics. 
In the latter case, the problem corresponds to the 
scattering of nonrelativistic particles of momentum 
p = Ilk by a square potential well or barrier of radius 
a and depth (height) given by Vo, 

VCr) = - Vo (0 S r < a); 

VCr) = 0 (r > a). (1.5) 

The refractive index is given by 

N = [1 + (2m VoJIl2k2)]i, (1.6) 

where m is the mass of the particle. Note that N > 1 
corresponds to a well and N < 1 to a barrier. This 
analogy, of course, is valid only at fixed energy, i.e., 
fixed k. For a fixed Vo , N is frequency-dependent 
(dispersion), while fixed N corresponds to an energy­
dependent potential (Vo proportional to the energy). 

The extension of the present model to complex N 
may be of some interest in connection with the optical 
model in nuclear and high-energy physics. Of course, 
it would still be unrealistic in several respects: at 
high energies, inelastic and relativistic effects become 
important, and the simple potential-well picture no 
longer applies. Furthermore, some of the effects to be 
described depend on the existence of a sharp edge in 
the potential, which again might be unrealistic for 
nuclear forces. Nevertheless, we shall see that at least 
some of these effects appear to have analogs in the 
nuclear case. 

We are dealing with a classic problem in scattering 
theory, the literature on which ranges over several 
decades.6 An excellent survey up to 1957 is given by 
Van de Hulst.4 

The exact solution of the electromagnetic problem 
in the form of a partial-wave series is usually associ­
ated with Mie. 7 As is well known, this series converges 
very slowly at high frequencies. One can then associate 
with the Ith partial wave an "impact parameter" 

P! = (/ + t)Jk, (1.7) 

and partial waves with P! ~ a are appreciably dis­
torted, so that one has to keep at least fJ terms in the 
series. Experience with numerical computations has 
shown that the actual number of terms that must be 
retained is 

(1.8) 

where c is a constant of order unity (empirically, 
c> 3). 

6 N. A. Logan, Proc. I.E.E.E. 53, 73 (1965). 
, G. Mie, Ann. Physik 25, 377 (1908). 

This result can be understood in terms of the 
penetration of the centrifugal barrier up to the surface. 
The effective potential for radial motion is 

U(r) = VCr) + /j2/(l + 1)J2mr2, (1.9) 

where VCr) is given by (1.5). [Actually, in order to 
apply the WKB approximation, l(l + 1) should be 
replaced by (/ + t)2.B] The discontinuity at r = a 
gives rise to a barrier, and P! > a, according to (1.7), 
corresponds to an energy below the top of this barrier. 
The transmissivity of the barrier up to r = a - 0 is 
then given byB 

(1.10) 

where 

"P! = - [Hi [(I + t)2 _ x2]! dx . 
Jp x 

(1.11) 

In particular, near the top of the barrier, we find 
that 

(1.12) 

so that the transmissivity for PI > a is appreciable 
only within the range f3 < I < 1+. 

The difficulty in employing the partial-wave expan­
sion at high frequencies is apparent from (1.8). 
Nevertheless, in view of the practical importance of 
the problem, numerical computations have been 
carried out in this way up to values of fJ of the order 
of a few hundred. Besides the fact that computer 
calculations are no substitute for a physical under­
standing of the behavior of the solution, however, 
there are also practical difficulties: The results are very 
rapidly varying functions of fJ, N, and the scattering 
angle, so that very closely spaced points would be 
required for accurate interpolation. 

Several approximation methods have been proposed 
to overcome these difficulties; they are reviewed in 
Ref. 4. The "localization principle" (1.7) leads to a 
subdivision of the terms of the partial-wave series 
into three domains: 

(i) 

(ii) 

(iii) 

o S 1 ~ L "" fJ - cf3!; 

L ~ I ~ 1+; 

1+ ~ I. 

(1.13) 

(1.14) 

(1.15) 

Partial waves in the domain (iii) are damped faster 
than exponentially by the centrifugal barrier and give 
a negligible contribution. The domain (i) gives rise 
to the forward diffraction peak, as well as to the 
contributions of reflected and refracted rays, accord­
ing to geometrical optics (Ref. 4, Chap. 12). 

8 M. V. Berry, Proc. Phys. Soc. (London) 88, 285 (1966). 
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84 H. M. NUSSENZVEIG 

The domain (ii) will be called the edge domain, 
because it corresponds to incident rays passing close 
to the "edge" of the sphere. We have already seen 
that the transmissivity of the centrifugal barrier is still 
appreciable for f3 < I < 1+. The domain L < I < f3 
corresponds to near-grazing incidence, so that strong 
reflection occurs, as well as strong interference between 
incident and reflected waves (Ref. 4, Sec. 17.21). 
We shaII see that the edge domain gives rise to some 
of the most interesting effects. 

According to classical mechanics, a particle with 
I + !,....., f3 would have vanishing radial velocity at 
r = a, and it might be expected to circle indefinitely 
around the scatterer, a phenomenon known as 
orbiting. 9 We shalI see that the edge domain indeed 
gives rise to surface waves, circling around the sphere 
any number of times. In addition, for N > 1, they 
can also penetrate through the sphere, leading to 
several striking effects, as wilI be seen later. 

The most far-reaching attempts to derive the high­
frequency asymptotic behavior of the exact solution 
have been based upon Watson's transformation. 1O- 12 

However, the results have never gone much beyond 
other previously known approximations, and they 
have been subject to several limitations. Only some 
disconnected angular regions have been treated, with 
no discussion of the transition between them. In 
particular, the neighborhood of the forward and 
backward directions, where several important diffrac­
tion effects take place, has not been treated. 

Light scattering by water droplets in the atmosphere 
gives rise to two of the most beautiful natural phenom­
ena: the rainbow and the glory. The best approxi­
mate theory of the rainbow so far available is still 
Airy's classic theory,13 despite the fact that it is 
known to suffer from several 'shortcomings (Ref. 4, 
p. 249). No satisfactory quantitative treatment of the 
glory has ever been given. 

A modified form of the Watson transformation has 
recently been developed and applied by the author 
to the problem of scattering by an impenetrable 
sphere (Ref. 14, hereafter referred to as N). This 
method enables one to derive the asymptotic behavior 
of the exact solution at any distance from the sphere 
and in any direction, including near-forward and 
near-backward directions. 

In the present series of papers, the modified Watson 
transformation is applied to the transparent sphere 

• K. W. Ford and J. A. Wheeler, Ann. Phys. (N.Y.) 7, 259 (1959). 
10 B. Van der Pol and H. Bremmer, Phil. Mag. 24,141,825 (19:37). 
11 P. Beckmann, Z. Naturforsch. 12a, 960 (1957). 
12 S. I. Rubinow, Ann. Phys. (N.Y.) 14, 305 (1961). 
13 G. B. Airy, Trans. Cambridge Phil. Soc. 6,379 (1838). 
14 H. M. Nussenzveig, Ann. Phys. (N.Y.) 34, 23 (1965). 

problem. We shall consider only the scattering 
amplitude; the behavior of the wavefunction in the 
near region is not discussed. The main result is that the 
asymptotic high-frequency behavior of the exact 
scattering amplitude in any direction can be deter­
mined by this method. The different types of transition 
regions that occur are discussed. In particular, an 
improved treatment of the rainbow and a quantitative 
theory of the glory wilI be given. 

In Sec. 2, the distribution of poles of the S function 
in the complex angular-momentum plane is deter­
mined. Their physical interpretation is discussed and 
their relation to the usual Regge poles that appear in 
potential scattering is examined. This helps to clarify 
a long-standing puzzle in scattering theory, namely, 
the question of why cutoff potentials and potentials 
with exponential tails give rise to scattering amplitudes 
having widely different analytic properties. However, 
it is found that the Watson transformation, applied 
directly to the partial-wave expansion, is not at alI 
helpful, because the residue series associated with the 
poles of the S function, in contrast with the case of an 
impenetrable sphere, are not rapidly convergent. 

This difficulty is circumvented in Sec. 3, by means 
of a procedure first applied by Oebye15 in the case of a 
circular cylinder. The interaction o(the incident wave 
with the sphere is decomposed into an infinite series 
of interactions with the surface, analogous to the 
multiple internal reflection treatment of the Fabry­
Perot interferometer. The terms of this Oebye expan­
sion are also closely related with the rays appearing 
in the geometrical-optics (ray-tracing) method that 
undergo multiple internal reflections. The poles in the 
complex-angular-momentum plane associated with 
the terms of the Oebye expansion are determined. 
It is found that, in contrast with the poles of the S 
function, they give rise to rapidly convergent residue 
series. The relation with previous treatments of the 
problem is also discussed. 

The modified Watson transformation can be applied 
to each term of the Oebye expansion. The asymptotic 
behavior of each term, as in the impenetrable sphere 
problem, is usuaIIy dominated by contributions of 
two types: (a) saddle-point contributions: these are 
associated with geometrical-optiG rays and the WKB 
expansion, and they are related with partial waves 
in the domain (i); (b) residue-series contributions: 
these correspond to surface waves, and they are 
related with partial waves in the edge domain (ii). 

Each class of rays gives rise to "shadow" and "lit" 
regions for the corresponding term of the Debye 

15 P. J. Debye, Physik. Z. 9, 775 (1908). 
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expansion. In lit regions, the amplitude is usually 
(though not always) dominated by the geometrical­
optic contributions, whereas the surface-wave contri­
butions are usually dominant in shadow regions. 
For N> 1, each term gives rise to· different shadow 
boundaries, but for N < 1 there exists a shadow 
boundary common to all terms of the Debye expan­
sion. 

For each term, we also find transition regions 
between light and shadow, and the most interesting 
diffraction phenomena occur in these regions. In 
addition to "Fock-type" transition regions, such as 
were found for an impenetrable sphere (N, Fig. 14), 
we shall find new types of transition regions, such as 
those associated with the rainbow and the glory. In 
terms of the particle picture, shadow regions are 
classically forbidden, and transition effects may be 
interpreted as a sort of "inertial barrier" penetration. 

As to the convergence of the Debye expansion, the 
geometrical-optic contributions usually converge quite 
rapidly, because of the attenuation due to successive 
internal reflections, provided that we exclude the 
cases (l.3). The surface-wave contributions do not 
converge so rapidly, because of their high internal 
reflection coefficient. Nevertheless, we shall be able 
to estimate their combined effect, and we shall see 
that, for N > 1, they give rise to rapid intensity 
fluctuations, which become quite large in the case of 
the glory. 

The present paper is concerned with the evaluation 
of the first two terms in the Debye expansion. The 
behavior of these terms is discussed both for N > 1 
and for N < l. In Sec. 4, we consider the first term, 
which corresponds to rays reflected directly from the 
surface. For N > 1, the results are quite similar to 
those found for an impenetrable sphere. For N < 1, 
however, we find a new type of diffracted rays, that 
cannot be interpreted according to the usual formula­
tion of Keller's geometrical theory of diffraction. 16 

The physical interpretation of these terms is given. 
In Sec. 5, the second term of the Debye expansion, 
corresponding to rays directly transmitted through 
the sphere, without any internal reflection, is treated 
in a similar manner. 

Paper II is concerned mainly with the third term, 
and it contains the theory of the rainbow and the 
glory (for the scalar problem). The effect of higher­
order terms will also be discussed. The conclu­
sions for both papers will be given at the end of 
Paper II. 

I. J. B. Keller, in "Calculus of Variations and its Applications," 
Proceedings of Symposia in Applied Mathematics, L. M. Graves, 
Ed. (McGraw-Hill, New York, 1958), Vol. 8, p. 27. 

2. THE POLES OF THE S FUNCTION 

The total scattering amplitude F(k, (}) is given by 
the partial-wave expansion 

1 (fJ 

F(k, ()) = :- L (1 + mSl(k) - I]P1(cos (}), (2.1) 
lk 1=0 

where Sl is the S function and PI is the lth Legendre 
polynomial. We shall find it convenient to work with a 
dimensionless scattering amplitude f(~, (}), defined by 

f(fJ, (}) = F(k, (})/a. (2.2) 

The continuity conditions for the wavefunction and its 
normal derivative at the boundary lead to the well­
known expression (cf. e.g., Ref. 17): 

S = _ hi2 )({3)[ln' h~2)({3) - N In' jz{rt.)] 23 
I h:ll({3) In' h:1 )({3) - N In' jz{rt.) , (.) 

where In' denotes the logarithmic derivative, jl and 
hi are spherical Bessel and Hankel functions, and we 
have introduced, in addition to (l.2), the dimension-
1ess parameter rt. associated with the internal wave 
number: 

rt. = Nka = NfJ. (2.4) 

Applying Poisson's sum formula [N, Eq. (9.57)] to 
Eq. (2.1), we find 

f({3, (}) = ~ i (_I)m 
{3 m=-oo 

where 

X fooo 

[1 - SeA, fJ)]P,l_~.(cos (})e2im~,lA dA, 

(2.5) 

S A _ H~2\~) ([2 ~] - N[rt.]) 
( ,~) - - H~l)(fJ) [1 fJ] - N[rt.] , (2.6) 

and we have introduced the following notations: 

[x] = In' J,l(x), 

[I x] = In' Hi1)(x), 

[2 x] = In' H~2)(X). 

(2.7) 

(2.8) 

(2.9) 

We have also gone over from spherical to cylindrical 
Bessel and Hankel functions. The physical values of A 
are A = 1+ t, I = 0, 1,2, .... 

The ordinary Watson transformation [N, Egs. 
(2.7) and (2.11)] yields 

f(~, (}) = J..-l [1 - SeA, fJ)]P,l_&(cos (})e-i~,l ), dA_ 
2~ (J cos (7TA) 

(2.10) 

17 H. M. Nussenzveig, Nucl. Phys. 11,499 (1959). 
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1m A 

c 

------------~~~~~~~~~~~-.ReA o 112 3/2 5/2 712 "2 

FIG. 1. The contour C. 

or, equivalently, 

1 I AdA 1«(3, 0) = -- [1 - SeA, (3)]P A-!( -cos 0) (1' 
2(3 a cos 7T1\.) 

(2.11) 

where C is the contour shown in Fig. 1. 
The representation (2.10) is equivalent to (2.5), 

as we see by employing, along the upper half of C, 
the expansion 

1 00 

-- = 2 L (_l)m exp [i(2m + l)7TA] (2.12) 
cos (7TA) m=O 

and, along the lower half, 

1 -1 
---..:=--- = -2 L (_l)m exp [i(2m + l)d]. (2.13) 
cos (7TA) m=-oo 

By substituting the same expansions in (2.11), we 
find that (2.5) is also equivalent to 

1«(3, 0) = - L (_l)m [1 - SeA, (3)]P A-!( -cos 0) 1 00 foo 

(3 m=-oo 0 

x exp [i(2m + 1)7TA]A dA. (2.14) 

In order to apply the modified Watson transforma­
tion (N, Sec. IX.D) directly to (2.5), we have to locate 
the poles of the meromorphic function SeA, (3) in the 
complex A plane. According to (2.6), they are the 
roots of 

[1 (3] = N[ex]. (2.15) 

By interpreting N in accordance with (1.6), they 
may also be identified with the Regge poles for a 
square potential well (N) 1) or barrier (N < 1). 

7 

~fMIo~~"f-!ff! i'il, 1'W,I\M;iMiW1-HH¥#'~~I'!::iJ'~-----.R. ~ 

7 

~" 

cI 
,~ 
~ 
~ S::j8 
~ 

FIG. 2. Subdivision of the A. plane into regions (regions 6a and 7a 
refer only to Sec. 3B). 

The Regge poles associated with the square-well 
potential have been investigated by many authors.1S-21 
For N < 1, they have also been investigated in 
connection with the scattering by a dielectric cylinder.22 

A detailed discussion of the pole distribution turns 
out not to be very relevant for the present problem, 
although some features of it will be required later on. 
On the other hand, such a discussion is very instructive 
in connection with the analytic properties of scattering 
amplitudes in potential scattering. The reader who is 
not interested in this connection may proceed directly 
to Sec. 3. 

Instead of solving (2.15) to determine the poles 
An«(3) of SeA, (3) for fixed (physical) (3, one can also 
fix A at a physical value, A = 1+ t, and solve with 
respect to (3, to find the poles (3n(l) in the complex 
(3 plane. This has been done explicitly for the lowest 
values of lP The two sets of poles are related to each 
other (Ref. 21, Chap. 14), and we shall make use of the 
known results on the poles (3n to help in the physical 
interpretation of the poles An' 

We are interested mainly in the Regge-pole distri­
bution for (3 » 1. The case N > 1 will be considered 
first. The physical interpretation of the results becomes 
simpler for N» 1, corresponding to an optically very 
dense material or to a very deep potential well. 
Accordingly, we shall assume that 

ex» (3 » 1. (2.16) 

To solve (2.15), we replace the cylindrical functions 
by their asymptotic expansions, given in N (Appendix 
A). Corresponding to N, Fig. 15, the A plane is 
subdivided into seven regions, as shown in Fig. 2. 

18 C. J. Bollini and J. J. Giambiagi, Nuovo Cimento 26, 619 
(1962); 28, 341 (1963). 

19 A. O. Barut and F. Calogero, Phys. Rev. 128, 1383 (1962). 
20 A. Z. Patashinskii, V. L. Pokrovskii, and I. M. Khalatnikov, 

SOy. Phys.-JETP 17, 1387 (1963). 
91 R. G. Newton, The Complex j-Plane (W. A. Benjamin, New 

York, 1964), Chap. 12. 
22 W. Streifer and R. D. Kodis, Quart. AppJ. Math. 23, 27 (1965). 
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(In the present section, regions 6a and 7a are not to 
be distinguished from 6 and 7, respectively; this 
distinction will arise only in Sec. 3B.) 

Outside of the shaded regions, we find: 

(~] ~ 0.2 - rx.2)!jrx., (2.17) 

[1 P] ~ -(.1.2 - (J2)!jP, in region 6, (2.18) 

(2.19) 

so that (2.15) becomes (). 2 - 1X2)! = ± (). 2 - (J2)!, 
and therefore has no solutions. 

The solutions must be located in the shaded regions, 
where either the left- or the right-hand side of (2.l5) is 
rapidly varying, because they contain the zeros of 
BjIJ({J) or J).(IX). 

Let us begin with regions 1, 2, and 3, where the 
zeros of J).(~) are located. In 1 and 2, for 

IX - IAI » ~t, (2.20) 

we have, according to N, Eq. (A16): 

(1X2 - A2)! [ TTJ 
[~] ~ - IX tan <p(A, rx.) - '4 ' (2.21) 

where 
<p(A, x) = (x2 - ).2)! - ). cos-l (Alx), (2.22) 

with 

where the exponential term is the small correction to 
(2.18) that is required to determine the imaginary 
part of the poles. 

Substituting (2.21) and (2.28) in (2.15), we find 

tan [<p(A, ~) - ~J 

Let 

(

).2 _ {J2 ! 
= -2--2) {I - 2i exp [211'(.1., {J)]}. (2.29) 

IX -). 

(2.30) 

be the roots of (2.29), where l'YJnj~nl « 1. Then, to a 
very good approximation, 

(t) TT -1 [(;; - fJ2)!] 
<p "n' IX ~ n1T + "4 + tan ~2 _;! ' (2.31) 

2[(~2 - c;;)a~ - fJ2)]! 
'YJn ~ «(1.2 _ P2) cos-l (;nj~) exp [21p(;n' P)]' (2.32) 

where n takes on integer values. To determine the 
real part of the poles, the real transcendental equation 
(2.31) must be solved. The corresponding imaginary 
part is then given by (2.32). In particular, for 

(2.33) 

(x2 - A2)! > 0, ° < cos-l (Alx) < 1T/2, these equations simplify to 

for -x < A < x. (2.23) (I. - (;n + t)(TT/2) ~ nTT, (2.34) 
In region 1, for 

1.1.1 - f3 » (Jl, (2.24) 

Eq. (2.18) is valid as a first approximation; however, 
in this approximation, we would find poles located on 
the real axis. To get the imaginary part of the poles, 
which is a small correction, we need an improved 
approximation for [1 Pl in region l. Under the 
condition (2.24), we have23 

H~l)({J) ~ (2/TT)§(J..,2 _ (12)-t 

X {exp{lp(,l, fJ)] - i exp (-11'(,1, (1)]), (2.25) 

where [cf. N, Eq. (A2)]; 

lp(A, x) = (,12 - x 2)! _ A In [~ + (1,2 ~ X2)!J (2.26) 

The branches of the many-valued functions that have 
to be taken are specified in N (Appendix A). In region 
1, with (2.24), we have 

Re 11'(.1., (J) < 0, IwO, (J)I » 1, (2.27) 
so that 

(.1.2 - (J2)§ 
[1 {J] ~ - (J {I - 2i exp [2tp{,l, {J))}, (2.28) 

is G. N. Watson, Theory of Bessel Functions (Cambridge Univer­
sity Press, Cambridge, England, 1962), 2nd ed., p. 267. 

(2.35) 

Thus, we find"in region I a series of poles located 
very close to the real axis. The spacing between two 
consecutive poles, according to (2.31), is given by 

~~n ~ TTjCOS-1 (~nIIX) (~2 for ~n« (I.). (2.36) 

According to (2.35), the poles get closer to the real 
axis as ; n increases. 

These poles have a simple physical interpretation in 
terms of resonances. Optically, they correspond to the 
"free modes of vibration of a dielectric sphere" 
[see Refs. 24 (p. 73) and 25}. Their long lifetime is 
made possible by the high internal reflectivity, due 
to the large refractive index, and by the high centrif­
ugal barrier, due to the large angular momentum. 
The resonance appears when the corresponding pole 
lies close to a physical value of A. 

In the quantum-mechanical interpretation, (2.16) 
corresponds to a very deep potential well, and the 
poles (2.30) correspond to resonances lying below the 
top of the centrifugal barrier. Under these conditions, 

~4 P. J. Debye, Ann. Physik Ser. 4, 30, 57 (1909). 
25 G. Beck and P. Wenzel, Z. Physik 84, 335 (1933). 
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the effective potential (1.9) represents a deep well 
surrounded by a high barrier, thus giving rise to 
sharp resonances. 

The corresponding poles in the {J plane are obtained 
by setting A = I + t in (2.29) and solving for {J. We 
find that Re {In is determined by the well-known 
resonance condition (Ref. 26, p. 382): 

7T 
N Re {In - (1 + t) - ~ n7T, (2.37) 

2 

which is equivalent to (2.34). We also find a result 
analogous to (2.32) for 1m {J n: 

1m {Jnoc exp [211'(/ + t, Re (In)] = exp (211'1) = VI' 

(2.38) 

where 11'1 is given by (1.11) and VI represents the 
penetration factor of the centrifugal barrier in the 
WKB approximation [cf. Eq. (1.10) and Ref. 26, 
p. 361]. This leads to the usual expression for the 
width r n of the resonance (Ref. 26, p. 389). 

In region 2, also assuming (2.24), we have, by 
N, Eq. (AI6), 

[1 {J] ~ i({J2 - A2)!/{J, 

so that (2.15) becomes 

(
{J2 _ A2)! 

tan [cp(A, ex) - 7T/4] ~ -i 2 2' 
ex - A 

or, since {J « ex, 

7T . ({J2 - A~ ! 
CP(An' ex) ~ n7T + - - I 2 2) . 

4 ex - An 

In particular, for IAnl «{J, this gives 

An ~ - - 2n + - + -, IAnl« {J. 2ex ( 1) 2i 
7T 2 7TN 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

This corresponds to another series of poles with spac­
ing I~Anl ~ 2, not so close to the real axis and with 
almost constant imaginary part. Their real part is 
again determined by the resonance condition (2.34). 

These poles are associated with broad resonances 
above the top of the centrifugal barrier. For the 
corresponding poles in the {J plane, we find 

1m {In ~ -1. (2.43) 

This again agrees with the usual expression (Ref. 26, 
p. 389) for the resonance width, with the barrier 
penetration factor VI set equal to unity, so that the 
width is determined only by the refractive index. 
For I = 0, these poles have been discussed in Ref. 17. 

In region 3, setting 

(2.44) 

2. J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics 
(John Wiley & Sons, New York, 1952). 

we find, by N, Eq. (AI5), 

(ft2 - ex2)! 
[ex] ~ - -"-------"-

ex 

{
2Sin(7Tft) - cos (7Tft)exp [2tp(ft,ex)]} 

x (2.45) 
2 sin ( 7Tft) + cos ( 7Tft) exp [2 tp(ft, ex)] , 

and, since H~~(x) = eirrIlH~l)(x), Eq. (2.28) gives 

(ft2 - {J2ylj 
[1 {J] ~ - --{J- {I - 2i exp [2tp(ft, {J)]}. (2.46) 

Substituting into (2.15), we find, for ft» ex, 

[
ex

2 

- {J2 (e{J)2
Il
J 2ft2 -2i 2ft sin (7Tft) 

~ -[ G;r - i (e;;~rJ cos ( 7Tft), 

so that the roots are located very close to the integers, 
ftn = n - En' I Enl « 1, and we finally get 

2n
2 

(eex)2n 
An = -ft" ~ -n + 7T(ex2 _ (J2) 2n 

x [1 + 4in
2 

(e{J)2nJ. (2.47) 
(ex2 

- (J2) 2n 

Thus, in region 3, there is an infinite number of 
poles, which approach the negative integers faster 
than exponentially as IAnl --+ 00. 

In region 4, let us consider first the neighborhood of 
A = {J. Let 

A = (J + eirr/3~/y, 
where we have introduced the parameter 

y = (2/{J)! « 1, 

(2.48) 

(2.49) 

which is very small according to (1.1), and we assume 
that I ~I = (') (1). The asymptotic behavior of the 
cylindrical functions under these conditions is given 
in Appendix A. It follows from (AI) and (A2) that 

[1 {J] ~ e-irr /3y Ai' (-~)/Ai (-~), (2.50) 

where Ai (z) is the Airy function. 
On the other hand, for 1m A » 1, Eq. (2.21) gives 

[ex] ~ i(ex2 - A2)!/ex, (2.51) 

so that (2.15) becomes 

Ai (-~)/Ai' (-~) ~ _eirr/6y/M, 

where we have introduced the abbreviation 

M= (N2-1)!, if> 1. 

(2.52) 

(2.53) 

According to (2.52), the roots lie close to the zeros 
Xn of Ai (-x). Let 

(2.54) 
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Then, (2.52) yields 

En ~ _eilr
/
6y/M, (2.55) 

so that (2.48) becomes 

An ~ fJ + eilr
/
3
(X n/Y) + i/M. (2.56) 

The first two terms of the (2.56) coincide with those 
found for the Regge poles for an impenetrable sphere 
[N, Eq. (3.5)]. Thus, as in that case, the poles (2.56) 
must be associated with surface waves, with an 
angular damping factor given by 1m An (N, Sec. V). 
The second term of (2.56) contains the radiation 
damping due to propagation along a curved surface. 
Since this effect depends only on the geometry (radius 
of curvature), it is not surprising that it coincides 
with that found for an impenetrable sphere. The 
third term in (2.56) is the only one that depends on 
the refractive index. It represents the additional 
damping due to refraction of the surface waves into 
the sphere. This is a small correction, provided that 
the refractive index is not too close to unity, as expres­
sed in the second condition (1.1). We now see the 
physical meaning of that condition: it implies that 
the damping of the surface waves is determined mainly 
by the geometry, and is not greatly perturbed by 
penetration into the sphere. 

Finally, let us consider the asymptotic behavior of 
the poles for large IAI in region 4. According to N, 
Eq. (3.7), we then have 

[1 fJ] ~ (A2 ~ fJ2yk coth [1p(A, fJ) - i~]' (2.57) 

while [~] is still given by (2.17). Thus, for 1).1 » ~2, 
Eq. (2.15) becomes 

coth [A In (2A) + i:':] ~ -1 + (N2 
- 1) L . 

efJ 4 2)2 

(2.58) 
Let 

An = Pn exp [i(7Tj2 - En)}, Pn» ~2. (2.59) 

Then, equating real and imaginary parts of (2.58), 
we get 

Pn In (2Pn/efJ) ~ 117T, (2.60) 

En ~ 2 In (;Pn/efJ) - ~7T In (~p). (2.61) 

The solution of (2.60) has already been given in N, 
Eq. (3.12): 

n7T 
Pn ~ + .... 

In (2n7T/efJ) 
(2.62) 

Substituting these results in (2.59), we see that the 
asymptotic behavior of these poles is again very 

1m. A 

: .,. 
''' ... 'f''''''' ,"" 
f;~ 

BROA\) 'fc 
• RESONANCES ~ NARROW 
J: Il- -$- , RESONANCES 

$-8-"- .... - .... --&-- ... - ..... --- - --$-- ... - ....... -' ...... - ... ~Re A 
-IX -/~ 0 fJ '" 

~ , 
r 
r • , 
* :$.' 

FIG. 3. The Regge poles of S(A, (J) for IX » {J » I. The physical 
interpretation of the poles in the first quadrant is also indicated. 
@-Class I poles; X -Class II poles. 

similar to that found for an impenetrable sphere 
[N, Eq. (3.13)]. Both Re An and 1m An approach 
infinity with n, but 

(2.63) 

The results for the poles in region 5 are very similar to 
those found for region 4. 

The complete pole distribution for ~»f3» 1 is 
schematically shown in Fig. 3. We see that the poles 
fall into two sharply differentiated classes: those 
located near the real axis, along the curve j, will be 
called Class I poles, whereas those located along the 
curves hand h' will be called Class II poles. 

The Regge trajectories for these two classes of 
poles also show quite different behavior.20 For Class I 
poles (called "physical" in Ref. 20), they behave 
similarly to the well-known pattern of Regge tra­
jectories for Yukawa-type potentials. 21 For a suffi­
ciently deep well, the "right-most" poles in the right 
half-plane move along the real axis at negative 
energies, giving rise to bound states, and they leave 
the real axis, going into the first quadrant, at positive 
energies, giving rise to resonances. At finite energy, 
there is only a finite number of Class I poles in the 
right half-plane. However, in contrast with Yukawa­
type potentials, the trajectories do not turn back as 
fJ -+ 00, but proceed to infinity in the right half-plane. 

The trajectories of Class II poles (called "unphys­
ical" in Ref. 20) behave quite differently. At finite 
energy, there is an infinite number of these poles, 
with unbounded real parts, in the first quadrant. 
As fJ -+ 0, they all move towards the origin, so that 
they have "O-type" trajectories, in contrast with Class­
I poles, which have "C-type" trajectories (cf. Ref. 21, 
pp. 66, 99, 100). 

The physical origin of the different behavior of the 
two classes of poles is now clear. Class I poles are 
associated with the "interior" of the potential, i.e., 

Downloaded 20 Jul 2011 to 156.56.192.76. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



90 H. M. NUSSENZVEIG 

with its behavior for r < a. This is why they resemble 
the usual Regge poles for Yukawa-type potentials. 
Class II poles, on the other hand, are by no means 
unphysical. They are associated with surface waves, 
as has been discussed in detail in N. They are insen­
sitive to the behavior of the potential in the internal 
region, and are almost entirely determined by the 
geometrical shape of the surface. 

These results help us to understand the origin of a 
very puzzling feature in dispersion theory, namely, the 
radically different analytic behavior of scattering 
amplitudes for cutoff potentials and for potentials 
with tails extending to infinity (e.g., Yukawa type). 
One can argue that cutting off an exponentially 
decreasing potential at sufficiently large distances 
should produce negligibly small physical effects, 
and yet it drastically alters the analytic behavior. 
This has always been regarded as an unphysical 
aspect of dispersion theory, reflecting the instability 
of analytic continuation. 

It is now seen that the effect is at least partially due 
to the appearance of surface waves as soon as a 
cutoff is made. For Yukawa-type potentials, it is the 
finiteness of the number of Regge poles in the right 
half-plane that leads to polynomial boundedness of 
the scattering amplitude in momentum transfer and 
therefore to the Mandelstam representation. For 
cutoff potentials, the existence of an infinite number of 
Class II poles in the right half-plane at any finite 
energy gives rise to an essential singularity at infinity 
in the momentum transfer plane, so that the Mandel­
stam representation is no longer valid.27 

It can still be argued that a sufficiently rapid expo­
nential decrease is physically indistinguishable from a 
sharp cutoff, and should therefore. give rise to effects 
resembling those of surface waves. However, this can 
only be true over a bounded energy range. In fact, 
"sufficiently rapid" means that the range of the 
exponential is much shorter than the wavelength, 
which ceases to be true at sufficiently high energy. 
On the other hand, cutoff potentials can support 
surface waves at arbitrarily high energy. This is 
related with the existence of an infinite number of 
Class II poles. 

Finally, let us briefly consider the pole distribution 
for N < 1. We restrict ourselves to the case N « 1 
(corresponding to a very high potential barrier), 
so that 

f3»rt.»I. (2.64) 

A detailed investigation of the pole distribution for 
N < 1 has been made by Streifer and Kodis.22 

Figure 4, based on their results, gives a schematic 

27 H. M. Nussenzveig, Ann. Phys. (N.Y.) 21,344 (1963), 

, , 
* , , 
f , 
~ 
r • : ~,' 

1m A 

C' 

FIG. 4. The Regge poles of sO., (3) for {3 » <X » 1. The physical 
interpretation of the poles in the first quadrant is also indicated. 
@-Class I poles; X-Class II poles. C' is the path used by Chen 
(cf. Sec. 3D). 

representation of the pole distribution when (2.64) 
is valid. 

The main difference with respect to Fig. 3 is that 
narrow resonances now occur also at low values, 
rather than only at high values of the angular momen­
tum: In fact, for 1,1.1 « rt., the poles are approximately 
given by [cf. Eq. (2.42)]: 

An ~ (2rt./7T) - (2n + t) + (2i/7T)N, (2.65) 

which is close to the real axis for N « 1. 
These poles correspond to Fabry-Perot type 

resonances immediately above the top of the barrier. 
The corresponding poles in the f3 plane, for I = 0, 
are given by Ref. 17 [Eq. (18)]. 

In the second quadrant, the poles again tend to 
approach the negative integers; (2.47) remains valid 
for N < 1. 

3. THE DEBYE EXPANSION 

A. Derivation 

If we try to apply the modified Watson transforma­
tion, as developed in N (Sec. IX.D), directly to (2.5), 
we are immediately confronted with the following 
difficulty: in contrast with the case of an impenetrable 
sphere, a large number of Regge poles lie close to the 
real axis (cf. Figs. 3 and 4). Therefore, if we succeeded 
in reducing (2.5) to rapidly convergent contour 
integrals plus series of residues at the Regge poles, 
as in N, the residue series would still be slowly 
convergent. According to (2.36), the number of poles 
located very close to the real axis in the first quadrant 
is of the order of (N - l)fJ. Thus, the minimum 
number of terms to be retained in the residue series 
(even without considering the infinite number of 
poles in the second quadrant) would be of the same 
order as in the original partial-wave series. Physically, 
this corresponds to the fact that a large number of 
partial waves can be near resonance at high frequency. 
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2' 

3' 

FIG. 5. Path of an incident ray J according to geometrical optics 
(N) J). 

Another way to see the origin of this difficulty, 
which also provides a clue to its solution, is to 
consider the contour integrals resulting from the 
transformation. In N, these contour integrals wen~ 
evaluated by the saddle-point method, and the saddle­
point contributions were found to correspond, in 
first approximation, to the results given by geometrical 
optics. 

In order to apply geometrical optics to the present 
problem, we have to consider the path followed by a 
ray incident upon the sphere. This path is indicated in 
Fig. 5. An incident ray I is partially reflected (ray I') 
and partially transmitted into the sphere (ray 2). 
Ray 2 in its turn undergoes partial internal reflection 
(ray 3) and partial transmission to the external region 
(ray 2'), a~d so on. This gives rise to an infinite series 
of multiple internal reflections, analogous to multiple­
beam formation in a plane-parallel plate. The geo­
metrical-optic solution outside of the sphere is 
constructed by superposing the contribution from the 
incident ray I with that from the directly reflected 
ray I I and those from all transmitted rays 2', 3', .... 

Thus, in contrast with the impenetrable-sphere case, 
where only direct reflection takes place, each incident 
ray generates an infinite series of geometrical-optic 
rays, which should correspond to an infinite number 
of saddle points. In the geometrical-optic description, 
the total interaction of a ray with the sphere is broken 
up into an infinite number of interactions with the 
surface. 

This is the clue to the resolution of the difficulty: 
in order to have a parallel with geometrical optics, 
we must look for a· description in terms of surface 
interactions. This was first done by DebyelS for a 
circular cylinder; his procedure was applied to the 
sphere by Van der Pol and Bremmer.IO 

For each multipole order I, we consider an incoming 
spherical wave of this order that strikes the surface 
of the sphere at r = a and is partially reflected and 

partially transmitted. In order to evaluate the reflec­
tion and transmission coefficients of the interface 
purely in terms of a surface interaction, we must 
regard it as an interface between two unbounded 
media, by solving the radial equation in a fictitious 
one-dimensional space, in which 'r ranges from - OC! 

to 00. If I and 2 denote the interior and exterior of the 
sphere, respectively, there will then be only a trans­
mitted wave in medium I, so that we have 

[
h: 2)(kr) h:I)(kr)] 

"P2.1 = A h:21 (f3) + R22(l, 13) h:11 (f3) , 

h(2)(Nkr) 
- A To (1 13) ....::Z--,--,,-

"Pu - 21, h:21(0:)' 

(3.1) 

(3.2) 

where "Pi.Z denotes the radial wavefunction in medium 
i for multipole order l, Rzz(/, 13) is the external spher­
ical reflection coefficient,and T21 (/, 13) is the spherical 
transmission coefficient from 2 to I. The wave­
function and its radial derivative must be continuous 
at the interface; the coefficients are determined by 
this condition. Letting 

1+ t = A, (3.3) 

we find 

R ( ' 13) - _ [2f3J - N[2 IXJ 
22 11., - [1 13] _ N[2 IX] , (3.4) 

Tz1(A, 13) = 1 + R 2Z(A, (J) 

[l 13] - [2 {J] 
= 

[1 (J] - N[2 IX] 

4i 
= 1T{JHill({J)H~21(f3)([1 f3J _ N[2 oe]) , (3.5) 

where we have employed the notations (2.8), (2.9), 
as well as the Wronskian relation 

W[H~11(Z), HiZI(z)] 

= Hil )(z)HiZI(z)([2 z] - [1 zJ) = -4i/1TZ. (3.6) 

Similarly, by considering an outgoing spherical 
multi pole wave of order I in medium I, we can deter­
mine the internal spherical reflection coefficient Rll 
and the spherical transmission coefficient T12 from 
I to 2: 

( ' (J) [1 (J] - N[llX] 
Rll 11., = - [1/3] _ N[20:] , (3.7) 

TIP, (J) = 1 + R1l(A, (J) 

N([1 IX] - [2 IX]) 
= 

[1 {J] - N[2 IX] 
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For real )" we have (reciprocity): 

IRu(A, ,8)1 = IR22(A, ml, A real. (3.9) 

On the other hand, for any A, real or complex, it 
follows from the reflection properties of the cylindrical 
functions with respect to the index [cf. N, Eq. (2.15)] 
that all the coefficients are even functions of A: 

Rii ( -)" (3) = Rii(A, (3); Tij( - 'A, (3) = Ti;{'A, m; 
i,j=I,2. (3.10) 

The conservation of energy (or probability, in the 
quantum-mechanical interpretation) yields 

IR22('A, pW + 1 H~2)({3) T. (A p) 12 
H~2)(a) 21 , 

, 2 1 H~l)(a) , 12 = IRu(A, p)1 + Hil)«(3) T12(A, (3) = 1. (3.11) 

These relations are valid for any real A, as may also be 
verified directly from the definitions of the spherical 
reflection and transmission coefficients, with the 
help of (3.6). Actually, the first equality in (3.11) 
already follows from (3.5) and (3.8). 

In the limit as the radius of the sphere goes to 
infinity, the above coefficients approach the well­
known Fresnel reflection and transmission coefficients 
for a plane interface at perpendicular incidence, as 
they should: 

N -1 
R 22 - ---

N + l' 
2 

T. ---21 N+l' 

N -1 
Rll --- , 

T --+~ 
12 N + 1 ' 

a-oo. 
N + 1 

(3.12) 

In order to expand the S function in terms of 
surface interactions, we first subtract from (2.6) the 
external reflection coefficient (3.4), rewriting the 
result as follows: 

H~l)(p) 
HiZ\p) S(A, p) - R22(A, p) 

= NT. (A p) «(a] - [2 IX]) 
21 ([1 (3] - N[a]) 

NT21()" (3)H~l)(IX)([l IX] - [2 a]) 

H~1)(a)([l (3] - N[! a]) + HiZ)(a)([l PJ - N[2 a]) . 

(3.13) 

With the help of (3.8), this becomes 

H~l)(,8) S A 
H~2)(,8) (, (3) 

= R
22

(A, ,8) + H~l)(IX) TZ1()" (3)T12()" (3) (3.14) 
Hi2)(a) [1 - peA, ,8)] , 

where 

(3.15) 

The Debye expansion is now obtained by expanding 
the inverse of the denominator in (3.14) into a 
geometric series: 

seA, ,8) = Hi2l(,8) {R . (A ,8) 
H il) ((3) 22' 

+ T21(A, (3)T12(A, ,8) HH:::«a) i [peA, fJW-1
}. 

). IX) p=l 

(3.16) 

This expansion has a very simple physical interpre­
tation. The over-all phase factor H12)(,8)!Hl1 )(fJ) ex­
presses the fact that the interaction takes place at r = a 
(rather than at r = 0). The first term RZ2 represents 
direct reflection from the surface. The pth term 
corresponds to transmission into the sphere (factor 
TZ1), followed by going back and forth between r = a 
and r = 0 p times [factors Hll)(IX)!H12)(IX) in p], with 
p - 1 internal reflections at the surface (factors 
Rl1 in p) and a final transmission to the outside 
(factor T1Z)' The origin acts as a perfect reflector 
(due to the regularity of the wavefunction at r = 0). 
The pth term of the Debye expansion represents the 
effect of p + 1 surface interactions. 

Before applying the Debye expansion, we must 
first make sure that it converges. For any finite real A, 
this follows immediately from (3.15) and (3.11): 

Ip(A, p)1 = IRu(A, (3)1 < 1, ), real. (3.17) 

In fact, the denominator of (3.8) has no poles for real 
A, so that I Td is strictly positive. 

On the other hand, as A --->- 00, it follows from the 
asymptotic behavior of T12 , given in Appendix B, 
and from N (Appendix A), that 

H~l)(IX) . ),2 (e fJ 2}.(eIX 2
,1 

Hi1)(p) Tu(A, ,8) ~ -4/ a2 _ p2 2A) 2J --->- 0, 

), --->- 00, (3.18) 
so that 

lim Ip(A, p)1 = 1. (3.19) 
A-+±OO 

Thus, in order to substitute the Debye expansion 
in (3.5), where the integrals range from 0 to 00, we 
must interpret the integrals in (2.5) as limits of finite 
integrals: 

('Xl dA = lim ('\dA. 
Jo A-+1fJ Jo (3.20) 

For any finite A, according to (3.17), the expansion 
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is justified, so that we get 
00 

j«(3, 0) = fo((3, 0) + L jp«(3, 0), (3.21) 
1J=1 

where 

jo({l, 0) = £ 1 (_1)m roo [l - H:~:«(3) R22] 
/3 m~-oo Jo H;. «(3) 

x p;._!(cos 0) exp (2im7TA)A dA, (3.22) 

jp«(3, 0) = - ~ 1 (_1)m roo U(A, (3)[p(A, (3)]P-l 
(3 m~-oo Jo 
x P ;._!(cos 0) exp (2im7TA)A dA, P 2 I, 

(3.23) 

where we have introduced 

• H~1l(ct.)H~2)«(3) • 
U(A, (3) = T21(A, fJ) H~2)(ct.)H~1)«(3) T12(t., (3) 

= U( -A, (3), (3.24) 

and all integrals in (3.23) are to be interpreted in 
accordance with (3.20). Actually, when we discuss 
the asymptotic behavior of the integrand of (3.23) 
(cf. Sec. SA and Appendix B), we shall see that it 
tends to zero faster than exponentially for A - (3 » 13k, 
just like the integrand of (2.5), so that contributions 
to (3.20) are very rapidly damped beyond this point 
and we do not have to worry about the effect of (3.19). 
This corresponds to the negligible contribution from 
the partial waves in the domain (1.15). 

Alternatively, one can also substitute (3.16) in 
(2.14) [or apply to each term of (3.21) the same 
transformation that led from (2.5) to (2.14)], with the 
result: 

1, «(3 0) = l 1 (_l)m roo [1 - Hi
2
)«(3) R ] 

0' (3 m~-oo Jo H~l)«(3) 22 

X P A-~( -cos 0) exp [i(2m + 1 )7TA]A dA, 

(3.25) 

jp«(3, 0) = - } m~oo (_1)m loo U(A, (3)[p(A, (3)]P-l 

x P A-!( -cos 0) exp [i(2m + 1 )7TA]A dA, 

P 2 1. (3.26) 

Although the Debye expansion is convergent with 
the interpretation (3.20), what matters in practice is 
whether or not it is rapidly convergent. There are two 
questions involved: first, whether the application of 
the modified Watson transformation leads to rapidly 
convergent results in the evaluation of each term 
in the expansion [in contrast with its direct application 
to (2.5)]; secondly, how rapidly the Debye expansion 
itself converges. 

We shall defer till later a discussion of the second 
point. As for the first one, the trouble with (2.5) was 
the slow convergence of residue series due to the 
existence of many Regge poles close to the real axis. 
In order to find out what happens for (3.21), our first 
task is to determine the distribution of poles in the A 
plane associated with each term. 

B. The Poles for the Debye Expansion 

According to (3.22)-(3.26) and (3.4)-(3.8), the 
same set of poles is associated with each term in the 
Debye expansion. The poles are the roots of 

[1 (3] = N[2 ct.], (3.27) 

which differs from (2.15) by the replacement [ct.]--+ 
[2 ct.], corresponding to the transition from standing 
waves to travelling waves within the sphere, in accord­
ance with the physical interpretation of the Debye 
expansion. Although the poles are the same for all 
terms, their order varies from term to term: they are 
of order p + 1 for the pth term (p = 0, 1,2, ... ). 

As we have seen in connection with (2.15), the roots 
of (3.27) are located in those regions of the A plane 
where either the left or the right-hand side is rapidly 
varying i.e., close to the zeros of Hll'«(3) (regions 4 
and 5, Fig. 2) or to those of Hi2 )(ct.) (regions 6a and 7a, 
Fig. 2). We shall denote by An the poles in region 4 
and by A~ those in region 6a. (As the Regge poles 
An discussed in Sec. 2 will no longer be considered 
from now on, no confusion should arise.) These 
considerations already suggest that there will not be 
many poles close to the real axis. 

Since [1 (3] and [2 ct.] are even functions of )" 
[cf. N, Eq. (2.15)], the pole distribution is symmetric 
with respect to the origin, so that it suffices to deter­
mine the poles located in the right half-plane. 

In region 4, Eq. (2.50) is valid, whereas we have 

[2 ct.] R> -i(ct.2 - ),,2)!/ct., if N> 1, 

R> _(),,2 - ct.2}1z/ct., if N < 1, (3.28) 

assuming that 1(;( - (31 »(31 [cf. (1.4)]. We then find 

An R> (3 + ei
"/3(Xn/Y) - i/M, N> 1, (3.29) 

where M has been defined by (2.53). The correspond­
ing result for N < 1 is obtained by the substitution 

M --+ -iM', N < 1, (3.30) 

where we define 

M' = (1 - N2)1z (N < 1). (3.31) 

As we found in connection with (2.56), the dependence 
on the refractive index is a small correction when (1.1) 
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FIG. 6. The poles associated with the Debye expansion for N > I. 
The path C' refers to (4.10) and the path r' to (4.18). 

is valid, so that the poles An are still very close to those 
found for an impenetrable sphere. 

Similarly, in region 6a, with 

A = IX + e-iIT/3(1Xj2)!~, (3.32) 

we find [cf. Eqs. (AI) and (A2)] 

[2 IX] f';::; eiIT/3(2/IX)t Ai' ( - ~)j Ai (-~), (3.33) 

and 
[1,8] f';::; _(,12 - ,82)!j,8, if N> 1, 

f';::; i(,82 - ;,81/,8, if N < 1, (3.34) 

so that the same procedure yields 

A.~ f';::; IX + e-iIT/3Nt(xn/Y) + N/M, N > 1, (3.35) 

to which the substitution (3.30) is to be applied for 
N<l. 

The pole distribution for N > 1 is illustrated in 
Fig. 6. The asymptotic behavior of the poles An as 
n -+ 00 is given by expressions very similar to (2.59)­
(2.62), and analogous results (with obvious modifica­
tions) hold for the poles A~. 

Although the above approximations turn out to be 
adequate for most purposes in the present paper, we 
shall later require a better approximation to the poles 
An' Complete asymptotic expansions for both An 
and A~ have been derived by Streifer and Kodis. 28 

Their results for An are reproduced in Appendix A, 
together with the SchObe asymptotic expansions for 
the cylindrical functions, on which their work is 
based. The case excluded by (1.1), in which IN - 11 "-' 
,8-i, has also been discussed in Ref. 28. 

C. Discussion 

The poles An shown in Fig. 6 do not differ very 
much from those found for an impenetrable sphere, 

28 W. Streifer and R. D. Kodis, Quart. App!. Math. 21, 285 
(1964). 

so that we expect them to be also associated with 
surface waves. 

The poles A~ are located in the fourth quadrant, 
where ordinary Regge poles cannot appear at positive 
energy (Ref. 21, p. 51); their appearance is due 
entirely to the Debye expansion. However, except 
for their location in different quadrants, the pole 
distributions for An and A~ have several features in 
common. This suggests that the poles A~ may be also 
associated with surface waves. It will be seen in Sec. 
4E that this interpretation is indeed correct. 

The next step will be to apply the modified Watson 
transformation to each term in the Debye expansion. 
As has already been mentioned in Sec. 1, the dominant 
contributions to the asymptotic behavior of each 
term are usually of the same type as for an impene­
trable sphere, i.e., saddle-point contributions and 
residue-series contributions. The former correspond 
to the geometrical-optic rays in Fig. 5, so that for 
each term there is a finite (and, at least for the first 
few terms, small) number of saddle points. The latter, 
according to Fig. 6, are rapidly convergent, since the 
imaginary parts of An and A~ increase rapidly with n. 
Thus, the modified Watson transformation leads to 
rapidly convergent asymptotic expansions for each 
term of the Debye series, in contrast with (2.5). 

There remains to discuss the second problem referred 
to above, namely, the rapidity of convergence of the 
Debye series itself. Insofar as saddle-point contri­
butions are concerned, they converge as rapidly as the 
corresponding geometrical-optic contributions, shown 
in Fig. 5. Their rate of convergence is determined by 
the damping produced at each internal reflection, 
i.e., by the Fresnel reflection coefficient at the inter­
face. (If the sphere is not perfectly transparent, there 
is an additional damping of successive terms due to 
absorption, which increases the rapidity of con­
vergence.) This in turn depends on the refractive 
index and on the angle ()2 in Fig. 5, i.e., on the impact 
parameter of the incident ray. If we exclude the cases 
N» 1, N « I, as in (1.3), the reflection coefficient is 
small for most directions, leading to fairly rapid 
convergence. 

In the case of water, for instance, which will be of 
particular interest later on, we have N f';::; 1.33, and it 
has been estimated by Van de Hulst (Ref. 4, p. 231) 
that more than 98.5% of the total intensity goes into 
the rays 1', 2', and 3' of Fig. 5, corresponding to the 
first three terms of the Debye expansion. The remain­
ing 1.5 % must be distributed among higher-order 
terms and residue-series contributions. 

Thus, in this case, residue-series contributions 
account only for a small fraction of the total intensity. 
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This does not preclude them from being large within 
narrow angular domains, concentrated about special 
directionf As will be seen in Paper II, this indeed 
happens in the glory region, where residue-series 
contributions become dominant over those associated 
with geometrical-optic rays. 

We shall postpone the discussion of the rapidity of 
convergence of the Debye expansion for the residue­
series contributions until we have found out more 
about their physical interpretation. It can already be 
expected, however, that they will converge much more 
slowly than the saddle-point contributions. In fact, 
as one increases the impact parameter of the incident 
ray, the reflection coefficient tends to increase, 
approaching unity in the limiting case of total reflec­
tion. This happens at glancing incidence for N > 1 
and at critical incidence for N < 1. While the corre­
sponding incident rays are totally reflected in the 
geometrical-optics approximation, it will be seen 
later that they are precisely the limiting rays respon­
sible for the excitation of surface waves. According to 
the above discussion, high reflectivity implies slow 
convergence of the surface-wave contributions. 

We can also note that Ip(A, P)I in (3.17) is very close 
to unity within the edge domain (1.14), from which the 
residue-series contributions originate. Different damp­
ing mechanisms also arise in this case. In spite of the 
relatively slow convergence, however, it is possible to 
estimate the total residue-series contribution and to 
find out its physical effects. We shall return to the 
discussion of this point in Paper II (Sec. 60). 

D. Relation to Previous Treatments 

Van de Hulst (Ref. 4, Chap. 12) applies the Debye 
expansion directly to the partial-wave series. He shows 
that the geometrical-optic contributions may be 
obtained by applying the principle of stationary phase 
to the domain (1.13); the forward diffraction peak 
also arises from this domain. He also gives a heuristic 
discussion of the contributions from the edge domain 
(1.14) (Ref. 4, Chap. 17). 

The Debye expansion combined with the Watson 
transformation has been employed by several authors. 
The results agree insofar as geometrical-optic contri­
butions are concerned, but they differ considerably in 
dealing with the remaining contributions. 

For N > 1, the treatments most closely related to 
the present one are those given by Van der Pol and 
Bremmer,Io Rubinow,I2 and Chen. 29 However, al­
though the method is potentially more powerful, the 
results do not go beyond the derivation of the geo-

29 Y. M. Chen, J. Math. Phys. 5, 820 (1964). 

metrical-optics approximation and the evaluation of 
some residue-series contributions within limited an­
gular domains. No discussion of the domain of validity 
of the results is given, and the transition regions be­
tween different angular domains are not considered. In 
particular, the neighborhood of the forward and 
backward directions is not treated. Rubinow and 
Chen relate their results with Keller's geometrical 
theory of diffraction. However, the contribution from 
the poles A~ is omitted in their work. 

Several investigations of the transparent cylinder 
or sphere problem have been made by Franz and 
Beckmann,11.30-32 who propose somewhat different 
methods in each of them. They criticize Van der Pol 
and Bremmer for substituting the Debye expansion 
directly in the partial-wave series, claiming that Ipi 
is necessarily greater than unity for some partial wave 
near A = rJ., so that the expansion diverges. However, 
in view of (3.17), this criticism is unjustified: I pi < 1 
for any real A, and in particular at the physical points 
A = 1+ !. It is true that Ipi ---+ 1 as A ~ ± 00 (cf. 
Eq. (3.19)], but this also happens for Franz and 
Beckmann's contours, as will be seen below, so that 
an interpretation similar to (3.20) is required, although 
they are apparently unaware of this. 

The starting point of their method is the representa­
tion (2.11); actually, they treat Green's function 
rather than the scattering amplitude. They then 
deform the lower half of the contour C (Fig. 1) into 
the lower half-plane, bringing it down to the negative 
imaginary axis11 or to the negative real axis.31.32 The 
Debye expansion is carried out along the modified 
contour. 

This modification has a twofold purpose: (i) to find 
a contour along which Ipi < I. As shown in Appendix 
B (Fig. 21) one then has 

lim p = 0 
1!.I~oo 

along the lower part of the modified contour, and it 
can be shown that I pi < 1 along the negative imaginary 
axis. (ii) To avoid the appearance of contributions from 
the poles A~. In fact, SeA, P) has no poles in the fourth 
quadrant, so that no poles are captured when the lower 
part of C sweeps across this quadrant, and the Debye 
expansion is only made afterwards. Franz and 
Beckmann claim that the residue series at the poles A~ 
have no physical interpretation, so that the poles are 
unphysical and should not contribute to the solution. 

30 W. Franz and P. Beckmann, Trans. IRE, AP-4, 203 (1956). 
31 P. Beckmann and W. Franz, Z. Naturforsch. 12a, 257 (1957). 
32 W. Franz, "T:leorie der Beugung elektromagnetischer Wellen," 

Erg., Angew. Math.,Band 4, §§16 and 19 (Springer-Verlag, Berlin 
19571 ' 
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FIG. 7. Modification of the contour C in (2.11) according to 
Franz and Beckmann. The integrand tends to infinity in the shaded 
regions, to zero elsewhere, apart from the poles X. The parameters 
1]1 and 1]2 are defined by (B2). 

To find out whether the modification proposed by 
Franz and Beckman is allowed, we must consider 
the asymptotic behavior of the integrand of (2.11) 
as IAI -+ 00, which follows from Appendix B (Fig. 18) 
and from N [Eq. (C8)]. The behavior differs from that 
shown in Fig. 18 essentially by a factor A!ei.l.O for 
1m A > 0 and A!ri)·o for 1m A < O. It follows that 
the integrand tends to zero everywhere, except in the 
shaded region of Fig. 7. 

Thus, while it is not possible to deform the lower 
half of C onto the negative imaginary axis, as proposed 
by Beckmann,11 it is possible to move it across the line 
of poles A~ (curve 'YJl -+ n/2) and into the region 
where. p -+ 0 as IAI-+ 00 (cf. Fig. 21, Appendix B). 
This leads to the contour D shown in Fig. 7. 

Furthermore, after making the Debye expansion 
on D, it is possible, for the first term of the expansion, 
to deform the part of D located in the upper half­
plane in order to obtain a path symmetric about the 
origin, which is another requirement in Franz and 
Beckmann's method. [If we had started from (2.10) 
instead of (2.11), it would have been possible to 
deform the lower part of C onto the negative imagi­
nary axis. However, the last requirement could not 
then be satisfied, because the integrand of (2.10) 
(as well as the corresponding first term in the Debye 
expansion) diverges as IAI -+ 00 over a portion of the 
upper half-plane, in such a way that no equivalent 
contour symmetric about the origin can be found.] 

However, a modified contour, such as they propose, 
is not only unnecessary, but also inappropriate. In 
fact, as was shown above, the condition Ipl < 1 is 
already satisfied along any bounded portion of C; 
it is unnecessary to get away from C in order to make 
use of the Debye expansion. It is true that p -+ 0 
along the part of D located in the lower half-plane, 

but we still have Ipl -+ 1 as IAI -+ 00 along the upper 
portion of D. This is unavoidable, as shown in 
Appendix B (Fig. 21). 

Furthermore, it is neither possible nor desirable 
to get rid of the contributions from the poles A~ . 
This can be seen already for the first term of the 
Debye expansion. As will be shown in Sec. 4, different 
representations are required for () » y and for () « y. 
Franz and Beckmann's representation, avoiding the 
poles A~, might be employed for () » y. However, it 
cannot be continued to the domain ()« y without 
including contributions from these poles. 

For N > I, we shall see that the contributions from 
the poles A~ are negligibly small (and consequently 
harmless). However, this is by no means so for N < I. 
In this case, as will be seen in Sec. 4, the residue 
series at the poles A~ play an important role, and they 
have a c1earcut physical interpretation. It will also be 
shown (cf. Sec. 4E) that there is no possible way to 
avoid them, since the contour that gives rise to the 
saddle-point contributions necessarily sweeps across 
the poles A~ as the scattering angle varies from 0 to n. 
We, conclude that Franz and Beckmann's method is 
not suitable for the present problem. 

For N < 1, there appears to be no treatment 
related to the present one. Chen's procedure for a 
cylinder, in this case,33 is to deform the path of integra­
tion, before making the Debye expansion, into the 
path C' shown in Fig. 4, thereby capturing the residues 
at Regge poles located to the left and to the right of 
C', as well as at the poles located close to A = r:t. 

(exactly how many such poles are to be enclosed is not 
specified). He then applies the Debye expansion on C' 
and claims that all the integrals over C' can be 
evaluated by the saddle-point method (without further 
residue-series contributions, because C' is kept within 
the lines on which An and A~ are located), yielding the 
geometrical-optic contributions. However, apart from 
the fact that C' is not suitable for saddle-point 
evaluation, it is contained within the region where 
Ipl -+ 00 (cf. Fig. 21, Appendix B), so that the Debye 
expansion diverges. Thus, Chen's method cannot be 
applied. 

Christiansen34 starts with a contour similar to that 
employed by Beckmannll ; after subtracting out the 
direct-reflection term, he deforms the path of integra­
tion for the remaining term [second term on the right 
in Eq. (3.14)] into the first quadrant, capturing 
the residues at the corresponding Regge poles. 

33 Y. M. Chen, J. Math. Phys. 6, 1332 (1965). 
34 P. L. Christiansen, Report No.1, Laboratory of Applied 

Mathematical Physics, Technical University of Denmark, Lingby, 
1965. 
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(C1) N > 1 (b) N < 1 

FIG. 8. StructlHe of the lit and shadow re~ions in the geometrical-optics approximation, for the first term of the Debye expansion. (a) 
N> .1; ~ IS the Impact parameter of the Incident ray that is, geometrically reflected in the direction O. {b) N < I; in this case, there is an 
additIOnal shadow, bounded by the critically reflected rays L (0, = crItical angle for total reflection). 

He then makes the Debye expansion over the 
resulting path of integration and applies the saddle­
point method. Here again the Debye expansion is 
divergent on the resulting path. Furthermore, all 
Regge poles in the first quadrant (Fig. 4) contribute 
(not only those near A. = IX), and we have seen that the 
corresponding residue series, for IX » 1, converge no 
better than the partial-wave expansion. 

4. THE FIRST TERM OF THE DEBYE 
EXPANSION 

A. Preliminary Considerations 

The first term of the Debye expansion is given by 
either one of the equivalent representations (3.22) 
or (3.25). In the geometrical-optics approximation, 
it is associated with rays directly reflected from the 
surface, without penetrating into the sphere, like the 
ray I' in Fig. 5. 

To each term of the Debye expansion, associated 
with a certain class of rays, there correspond, in the 
geometrical-optics approximation, one or more "lit 
regions" and one or more "shadow regions," the 
latter being inaccessible to rays of this class (though 
not necessarily to rays of other classes i). The structure 
of these regions for the first term of the Debye 
expansion is shown in Fig. 8. 

For N> 1, at finite distance, we have the geo­
metrical shadow of the sphere, just as for an impene­
trable sphere. For the scattering amplitude, which 
represents the field at infinity, this corresponds to the 
single direction () = 0 [Fig. 8(a)]. 

For N < 1, there is an additional shadow, bounded 
by the reflected rays L' corresponding to the critically 
incident rays L, that fall upon the surface at the critical 

angle, 

()l = sin-1 N, N < 1. (4.1) 

Beyond this region [Fig. 8(b)], total reflection occurs. 
It will be seen in Sec. 5 that the complementary 
region, () > 7T - 2()1' is a shadow region for trans­
mitted rays, and this remains true for all terms of the 
Debye expansion. 

We shall see that around each shadow boundary 
there is a domain of angular width d(), where the 
transition from the lit region to the shadow takes 
place. For an impenetrable sphere (N), such transitions 
were found to be described by "Fock-type" functions, 
and the corresponding angular width was given by 
(N, Fig. 14): 

(4.2) 

where y is defined by (2.49). Transitions of this type 
will be called "norma\." The scattering amplitude is 
given by different approximations within a transition 
region and on either side of it. 

We shall consider first tne case N > 1. The structure 
of the first term should then be very similar to that 
found for an impenetrable sphere, since the corre­
sponding class of rays does not penetrate within the 
sphere. According to Fig. 8(a), different approxima­
tions should hold for 0:::;: () ~ d() and for d()« 
() :::;: 7T; for an impenetrable sphere, d() was given by 
(4.2) (N, Sec. IX.D), and the same is true here. 

The corresponding representations for fo(fJ, ()) 
can be derived from (3.22) and (3.25) by the same 
procedure applied in N (Sec. IX.D). Let us define 
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Then, as in N [Eq. (9.59)], it follows from (3.22) that [Eq. (9.61)], we get, just as in N [Eqs. (9.62)-(9.65)], 

fo«(3, 0) = i 5: ( _1)m 
fJ m=O 

X U:}e2i
";' - SoU" fJ)]P;._i(cOS O)e2im";'A dA 

+ LX) [1 - So(A, (3)]P;._i(cOS O)e2im""A dA}. (4.4) 

The asymptotic behavior of R22(A, fJ) as IAI ---- 00 

follows from Appendix B (Fig. 19). We find that 
R22 ---- -1 in all regions, except for -7T/2 < 'YJ2 < 17'/2, 
where R22 - ... 0 like A-2• Thus, except in this region, 
we have 

SO(A, fJ) """ Simp(A, fJ) = - H~2)(fJ)/ H~l)(fJ), 

as "".1---- 00, (4.5) 

where Simp(A, fJ) is the S function for an impenetrable 
sphere [N, Eq. (3.1)]. 

Combining the above results with those given in N 
for the asymptotic behavior of Simp(A, (3), we find that 
e2i,,;. - So(.A" fJ) tends to zero at least as fast as ei1T). 

in the second quadrant, so that the path of integration 
in the first integral of (4.4) may be shifted to the 
positive imaginary axis. To do this, we have to sweep 
across the poles - A~ (Fig. 6), so that we get a corre­
sponding residue-series contribution. Let 

r~n = residue So(A, fJ)IA=A n " 

Then, according to (4.3), we have 

'd S (' !I)I -2ilTAn' I reSl ue 0 JI., P ;'=-X,( = -e rOn, 

so that we find 

UfJ, 0) = i 5: ( _1)m 
fJ ",=0 

(4.6) 

X {l: [e2ilTA - So(A, fJ)]P;._i(cOS O)e2i","A), ciA 

+ LX) [1 - SoCA, fJ)]P;._i(cOS O)e2i
",trAA ciA} 

+ 217' 5: ( _1)m I A~r~n 
fJ m=O n 

X exp [-2i(m + 1)7TA~]P;'n'_!(COS 0), (4.7) 

Writing 

e2id 
- So(A, fJ) = e2ilT;' - 1 + 1 - So(A, (3) 

in the sum from m = 1 to 00, and employing N 

fo«(3,O) = - i fO SoO, fJ)Px_!(cos 6)A dA 
fJ );00 

+ ~ LX) [l - SoCA, fJ)JP ;._~(cos 6)A ciA 

2ilo e2;,,;' + - 2. ;. PA_i(cOS O)A dA 
(3 ioo 1 + e tiT 

+ 217' 5: ( _1)m I A~f~n 
fJ m=O n 

X exp [-2i(m + l)7TA~]PAn'_i(COS 0) 

+ ~ lI( -1)m(l: + LOO) [1 - So(A, (3)] 

(4.8) 

It follows from (4.3)-(4.5) that the asymptotic 
behavior of 1 - So(A, fJ) in the first quadrant is the 
same as that for an impenetrable sphere, so that, as in 
N [Eq. (9.65)], the path of integration in the last 
term of (4.8) can be closed at infinity, reducing it to a 
residue series at the poles An in the first quadrant (Fig. 
6). Similarly, we can split the path of integration in the 
second term of (4.8) at A = fJ and combine it with the 
first term, as in N [Eqs. (9.67)-(9.69)], so that we 
finally get 

fo«(3, e) = fOl + f02 + f03 + 1o,1'0S + j-;;,m' (4.9) 

where 

f01«(3, 6) + f02(fJ, 0) 

= - i iP 
So(A, (3)p;._!(cos e)A dA 

f3 0'1 CIJ 

+ ~ loo [1 - So(A, fJ)]P;._!(cos 6)A ciA, (4.10) 

f03«(3, e) = !:. p .<_!( cos e)A ciA + Lll' 'lP 
fJ 0 

(4.11) 

2ifO e
2ilTA 

Ll1(fJ, e) = - 9 ' PJ._!(cos 0»). ciA, 
fJ ioo 1 + e"''''" 

(4.12) 

lo,rei(3, e) = 2f37T m~l(-l)m ~ AnfOn 

X exp (2im 17' An)P '<n-!( cos 0), (4.13) 

J~,re"(fJ, 6) = 2fJ17' l} _1)m ~ A~f~n 
X exp [-2i(m + 1)7TA~]P;'n'_!(cos 6), 

(4.14) 
and 

(4.15) 
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The path C' from a100 to (3 is shown in Fig. 6. 
According to the above discussion on the behavior of 
So(./l., (3), the path must begin at infinity to the left of 
'YJ2 -- - (7T - e)/2 (cf. also Fig. 10); in particular, any 
direction a100 in the second quadrant may be chosen. 

The representation (4.9)-(4.14) is exact and, just 
like its counterpart N, Eq. (9.78), it will be employed 
for 

o ~ e ,.; y. (4.16) 

To obtain the counterpart of N, Eq. (9.79), we might 
proceed just as in N, by transforming (4.7), but it is 
simpler to start from (3.25). By the same procedure 
that led from (2.11) to (2.14), we find that (3.25) is 
equivalent to 

fo({3, e) = - [1 - So(A, (3)]P,,-!( -cos fJ) , 1 J AdA 
2{3 c cos (7TA) 

(4.17) 

where C is the contour shown in Fig. 1. 
The asymptotic behavior of the integrand as 

IAI-- 00 is essentially the same as that of (2.11), 
illustrated in Fig. 7. Thus, we can deform the lower 
half of C into the lower half of the contour r' shown 
in Fig. 6, going from -iioo to 0 (r' is symmetric 
about the origin). This gives rise to a residue-series 
contribution from the poles A~. Similarly, the upper 
half of C can be deformed into the upper half of r', 
from 0 to GOO, giving rise to a residue-series contri­
bution from the poles An' The result is 

(4.18) 

The integral can be split into two, corresponding to 
the two terms within square brackets (both are 
convergent for e > 0). The first of the resulting inte­
grals identically vanishes, because its integrand is 
odd. The second integral can again be split into two 
according to the identity [N, Eq. (C5)]: 

P A-!( - cos e) = i e-i
" A P A-!( cos fJ) 

- 2i cos (d)Q~~!( cos e). (4.19) 

Again, both integrals are separately convergent for 
e > 0, and the first one identically vanishes due to the 
anti symmetry of the integrand [cf. Eq. (4.3)]. 
Finally, substituting (2.12) in the first residue series 

of (4.18) and (2.13) in the second one, we get 

fo({3, e) = fo. 9 + fo.res + f~.res, (4.20) 

where 

fo.i{3, e) = - !.. ( So(A, (3)Q~~!(cos e)A dA, (4.21) 
(3 Jr' 
27Ti 00 

fo.rcs({3, e) = - (i l} _l)m ~ AnrOn 

x exp [i(2m + 1 )7TAn]P A
n
-!( -cos e), (4.22) 

and 

f~.resC{3, e) = - 2;i m~o( _1)m ~ A~r~n 
x exp [- i(2m + 1) d~]P An' _!( - cos e). (4.23) 

In view of the symmetry property (4.3), we may 
rewrite (4.21) as (cf. N, Eqs. (9.75)-(9.76)]: 

fo.oC{3, e) =!.. (_0 So(,1, (3)P A-!( -cos e) 
{3 Jaoo 

X e-i"A tan (d)A dA, (4.24) 

thus rendering manifest the regularity of all the above 
expressions at fJ = 7T. 

The exact representation (4.20)-(4.24) is the 
counterpart of N, Eq. (9.7~), and it will be employed 
for 

y «e ~ 7T. (4.25) 

Together with (4.9)-(4.14), it allows us to determine 
the asymptotic behavior ofjo({3, e) for 0 ~ e ~ 7T and 
N > 1. The case N < 1 will be discussed in Sec. 4E. 

B. Behavior for N> 1, () »y, 1T - () » (3-! 

Let us consider first the behavior of jo({J, e) for 
N> 1 and e not too close to 0 or 7T. As in N [Eq. 
(9.9)], we shall see that the approximations below are 
valid for 

e » y, 7T - e » {3-!. (4.26) 

In this domain, we employ (4.20)-(4.24). 
Let us discuss first the behavior of (4.21), which is 

quite similar to that of N, Eq. (9.8), representing the 
directly reflected wave in the geometrical-optics 
approximation. As in N, Eq. (9.8), the main contri­
bution to (4.21) arises from the neighborhood of a 
saddle point, located at [cf. N, Eq. (9.2)] 

;: = kp = {3 cos (e(2). (4.27) 

The physical interpretation is the same as in N 
(Fig. 11): p is the-impact parameter of the incident ray 
that is geometrically reflected from the surface in the 
direction e; this is also shown in Fig. 8(a). We may 
again employ the approximation N, Eq. (6.14) for 
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H12'«(3)jHll'«(3) and N, Eq. (C7) for Qi~! (cos 0). 
There remains only to approximate R22 in (4.3). 

In the neighborhood of A = t we can employ the 
Debye asymptotic expansion N, Eq. (AI6), to 
evaluate [1 (3], [2 (3], and [2 (X] in (3.4), with the 
following result: 

(3[ 1 (3] - i«(32 - A2)! - (32 + o[ (32 ] 
- 2«(32 - 1.2) «(32 _ A 2)! . 

(4.28) 

To obtain [2 (3], it suffices to replace i by -i, and 
[2 (X] is obtained by replacing (3 by rx. Substituting 
these approximations in (3.4), we find 

(4.29) 

Finally, substituting all the above approximations 
in (4.21) and making the change of variable 

A = (3 cos w, (4.30) 

we get 

I' «(3 0) - _e il1 / 4 ( (3 )! 
JO.g' - 27T sin 0 

X f B(w, (3, 0) exp [i(3b(w, 0)] dw, (4.31) 

where 

b(w, 0) = 2[ (w -~) cos w - sin w} (4.32) 

1 (,//li2 - cos2 W - sin w) 
B(w, (3, 0) = sin w(cos w)~ / 

V N 2 
- cos2 

W + sin w 

X{l+~[_I_+ cotO +~COS2W 
4(3 sin w 2 cos w 3 sin3 w 

+. 4 cos
2 

W ] + 0«(3-2)}, 
sm w(N2 

- cos2 w) 

(4.33) 

and the path of integration is the image of r' (Fig. 6) 
in the w plane. For the application of the saddle-point 
method, the path is shifted so as to cross the real axis 
at the saddle point (4.27), i.e., at IV = Oj2, 0 < IV < 
7Tj2, at an angle of -7T/4 with the real axis. 

The formula for the saddle-point evaluation of 
(4.31), including the first correction term, has already 

been given in N [Eq. (6.21)]: 

fo «(3, 0) = - 1 - -- - + - -BeiOP 
{ i [B" B' bill 

.U (WI sin O)! 2(3 WI B B WI 

5 (b"')2 1 b"" ] } + 12 bIt +:4 WI + 0«(3-2), (4.34) 

where B, b, and their derivatives are to be evaluated 
at the saddle point IV = Oj2. Substituting (4.32) and 
(4.33) in (4.34), we finally get 

fo.uC(3, 0) = _ ! (.J N 2 
- cos

2 
(Oj2) - sin (Oj2») 

2 .J N 2 - cos2 (Oj2) + sin (Oj2) 

X exp (-2;(3 sin (Oj2n{1 + ~[. 1 
2(3 sm3 (012) 

_ 2N2 - cos
2 

(Oj2) ] + 0(r2)}. (4.35) 
(N 2 

- cos2 (Oj2»! 

The main term of (4.35) is well known [cf. Ref. 12, 
Eq. (39)]. In the limit N --+ ioo, which would formally 
correspond to an impenetrable sphere, both the main 
term and the first correction term agree with the 
result found in N [Eq. (9.4)]. The main term differs 
from that result only by the replacement of the re­
flection coefficient R = -1 for an impenetrable sphere 
by the Fresnel reflection coefficient corresponding 
to the angle of incidence Ol = (7T - O)j2 [Fig. 8(a)]: 

sin (Ol - ( 2) 
R = - ---'--"_-=:' 

sin (Ol + (2) 

.J N 2 - cos2 (012) - sin (Oj2) 

.J N 2 - cos2 (Oj2) + sin (Oj2) • 
(4.36) 

Let us consider next the residue-series contribution 
from the poles An' given by (4.22). The poles An are 
given by (3.29), with sufficiently good approximation 
for our present purpose (a more accurate expansion 
is given in Appendix A). The residues ron follow from 
(4.15), (4.3), and (3.4): 

where 
ron = 4ij{ 7T(3[H~l~«(3)]2 d(An' (3)} 

d(A, (3) = [1 (3] - N[2 (X], 

(4.37) 

(4.38) 

and the dot denotes a derivative with respect to A; 
we have also made use of (3.6). 

The asymptotic expansion of all functions required 
for the evaluation of (4.37) is given in Appendix A. 
If we keep only the dominant term in each expansion, 
we find 

r "'" e- il1 / 6j27Tya,2 On "t"V n' (4.39) 

where we have introduced the abbreviation 

(4.40) 

and Xn is defined by (2.54). If necessary, higher-order 
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B 

T, 

FIG. 9. Diffracted rays TIT~A and T2T~B in the direction e. 

corrections to (4.39) can easily be computed, with the 
help of Appendix A. 

Substituting P
An

- lz (-cos e) in (4.22) by its asymp­
totic expansion N, Eq. (C8), we finally get 

] 

fo.rcif3, 8) = ~ C~n17e) {e-
itr

/
4 ~ J An ron exp (iAnvt) 

where 

OCJ 

+ L (_l)m L JAn ron 
m=l n 

X [exp (iAnV;; + i~) 

+ exp (iAnV~ - i~) ]}, (4.41 ) 

V~ = 2m17 ± e, m = 0, 1,2, . . . . (4.42) 

In particular, in the lowest-order approximation, in 
which FOn is given by (4.39), the above result becomes 
formally identical to N, Eq. (9.5), the only difference 
(apart from notation) being in the expression for the 
poles An' 

The physical interpretation of this result is again the 
same as in N: the incident rays tangential to the sphere 
at Tl and T2 (Fig. 9) excite surface waves that travel 
around the sphere any number of times, giving rise to 
diffracted rays in the direction e. The angles v~ 
correspond to the total arc described along the 
surface (Fig. 9). 

In the language of the geometrical theory of 
diffraction,35 we can rewrite (4.41) as follows: 

fo.rc'(f3, 8) = -. 1_! {-i L D~ exp (iJ,,,vri) 
(sm 8) n 

OCJ 

+ I.e-l)m L D~ 
m=l n 

X [exp (iAnv;;;) - i exp (iAnV;:;)]}, (4.43) 

.5 B. R. Levy and J. B. Keller, Commun. Pure Appl. Math. 12, 
159 (1959). 

where 1 

D; = ei7r/4(217AnFron/f3 (4.44) 

is the square of the diffraction coefficient. (Our 
diffraction coefficient differs from that of Levy and 
Keller35 by an extra factor a-!, to render it dimen­
sionless.) One factor Dn corresponds to the excitation 
of a diffracted ray (e.g., at T1 , Fig. 9), and the other 
one to its reconversion into a tangentially emerging 
ray (e.g., at T~, Fig. 9). 

In the first-order approximation (4.39), Eq. (4.44) 
becomes 

1 

e
i7r

/
12 

e
i7r

/
12 (2)" 

D~ ~ (217fJ}fya~2 = 2J 17 a~2 /J . (4.45) 

This is identical to the result for an impenetrable 
sphere [cf. N, Eq. (9.5), and Ref. 35, p. 170]. [Chen's 
result for a cylinder [Ref. 29, Eq. (1.42)], although 
apparently different, can be shown to be equivalent 
to (4.45), by employing Ref. 29, Eq. (1.44).] Thus, to 
first order, not only the decay exponents, but also the 
diffraction coefficients associated with this class of 
rays are the same as those for an impenetrable sphere. 

Finally, let us consider fd.res(fJ, 8), which is given 
by (4.23). The expression for r dn differs from (4.37) 
only' by the replacement of An by A~. Taking into 
account (3.33)-(3.35), we find 

r~n ~ 2i(N(M) exp (2MfJ - 2A~ cosh-1 N) (4.46) 

and, similarly to (4.41), 

1 ( 217 )! f~.res(f3, 8) ~ /J sin e 

x i (_1)m L JT" r~n exp (-2im17A~) 
m=O n 

x {exp [- iA~(217 - e) - i( 17(4)] 

- exp [-iA~8 + i(17/4)]}. (4.47) 

Since 1m A~ < 0, this is again a superposition of 
rapidly damped surface waves; however, as Re A~ > 
0, they travel around the sphere in the opposite 
sense to those in (4.41). 

In order to estimate the order of magnitude of this 
contribution, we may substitute A~ by (3.35), taking 
into account only the contributions from the first few 
poles. We then find 

f~. resCfJ, e) 

~ 2 Ni(~)lz exp [-2(J(N cosh-1 N - M)] 
M {J sin e, 

X i: (_1)m I exp [-2e-i7r /3x n cosh-1 N(a/2)!] 
m=O n 

X exp(-2im17A~){exp [-iA~e - i(17/4)] 

+ exp [-iA~(217 - () + i(17/4)]}. (4.48) 
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Due to the presence of the over-all exponential 
factor outside of the sum, as well as the rapidly 
damped exponentials within the sum, f~,res({3, 0) is 
exponentially small in comparison with fo,res({3, 0) 
[cf. Eq. (4.41)], and may therefore be neglected. This 
is true even for N close to unity, provided that 
condition (Ll) is verified. 

Although r~, res({3, 0) is completely negligible for 
N > I, it will be seen in Sec. 4E that this is no longer 
true for N < I. The result found in that case has a 
well-defined physical interpretation. It will then 
become clear that (4.48) represents the analytic 
continuation of that result to N > 1, in which process 
r!!al rays are replaced by imaginary rays, giving rise 
to the real exponentials in (4.48). Thus, there is no 
reason either for calling this contribution unphysical 
or for trying to avoid it, as was done by Franz and 
Beckmann (cf. Sec. 3D). 

Finally, let us show that the domain of validity of 
the above approximations is indeed given by (4.26). 
This follows from the following facts: (i) The Debye 
asymptotic expansion (4.28) employed in the neigh­
borhood of ;: is no lQnger valid when {3 - ;: = (')(y), 
i.e., by (4.27), when 0,..; y. Correspondingly, the 
WKB expansion (4.35) is rapidly convergent only for 
o » y. (ii) The asymptotic expansions of the Legendre 
functions employed above are valid only for Tr -
fJ » {3-t. 

c. Behavior for N > 1, 1T - () ,..; fJ-t 

The procedure to be employed near the backward 
direction is exactly the same as in N (Sec. IX.C). 
We start from (4.24) to compute fo,/{3, 0). The only 
difference with respect to N [Eq. (9.45)] is an addi­
tional factor - R22(A, (3) in the integrand. Since the 
main contribution to the integral arises from litl ,..; (3t 
[N, Eq. (9.48); there was a misprint in this equation: 
the exponent should read i instead of - i], we expand 
- R22 in powers of it, keeping only terms that yield 

corrections up to (')({3-1). The result [cf. Eq. (4.29)] is 

-R22(A, (3) = (N - 1) (1 + A22 + ... ). (4.49) 
N + 1 N{3 

Let 0 = Tr - E, E"'; {3-!. (4.50) 

Then, proceeding exactly as in N (Sec. lX.C), and 
employing precisely the same notation, we find that 
fo,/{3, Tr - E) is given by N [Eq. (9.51)], multiplied 
by the over-all correction factor (N - I)/(N + 1), 
and with the following additional term within the 
square brackets: 

- J..- r <Xl exp ( _ x2)J o( wx) tan ( Tra.x )x3 dx 
N{3 Jo 

= _1_(1 + i{3~) exp (i{3~) + (')({3-2), (4.51) 
2N{3 4 4 

which arises from the term A2/(N{32) in (4.49). The 
integral has been evaluated by the procedure given in 
N, Appendix F. 

Thus, we finally obtain, in the place of N [Eq. 
(9.53)], 

!0,Y({3, Tr - E) 

= - H~ ~ ~) exp [- 2if3( 1 - f) ] 
x [1 + ;(3 - i~~ - ~f3( 1 + i{3;) + (')({3-2)], 

o ~ E ,..; {3-t. (4.52) 

This coincides with the expansion of (4.35) in powers 
of E2, within the-domain E ,..; (3-t. Thus, precisely as in 
N, we see that (4.35) is uniformly valid up to 0 = Tr. 

In the backward direction, we get the reflection 
coefficient (3.12). 

The only modification that is necessary info,res and 
f~,res is the substitution of the asymptotic expansion 
[N, Eq. (C8)] of the Legendre functions by the uni­
form asymptotic expansion [N, Eq. (Cll)]. Finally, 
putting together all these results in (4.20), we obtain 

!o({3, 0) ~ _l([N2 - cos
2 

(0/2)]! - sin (0/2») exp (-2i{3 sin (0/2» 
2 [N2 - cos2 (O/2)]! + sin (0/2) 

X {I + ~[ 1 _ 2N2 - cos
2 

(0/2) ] + (')({3-2)} 
2f3 sin3 (012) [N2 - cos2 (012)]! 

eil1
/
3 (Tr _ fJ)t <Xl . - - -.- ~ (_I)m ~ (a~)-2 exp [i(2m + I)TrAn]J o[AnC Tr - e)] 

y sm 0 m=O n 

N2
(Tr _ 0)* + 4Tr - -. - exp [-2f3(N cosh-1 N - M)] 

M sme 

x i: (_1)m ~ exp [_2e- il1
/
3 cosh-1 N(a./2)fx,,] exp [- i(2m + I)TrA~]Jo[it~( Tr - e)], 

m=O n 

N> 1, y« 0 ~ Tr, (4.53) 
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which is uniformly valid throughout the whole domain 
(4.25). We have employed the approximation (4.39) 
for ron; a better approximation may be obtained, if 
necessary, from (4.37) and Appendix A. 

The contribution from the residue series fo.res is 
very small, except perhaps at the lower end of the 
range y« 0; that from the residue series f~.rrs IS 

always negligible when (Ll) is satisfied. 

D. Behavior for N > 1, 0 :s;; 0 ~ y 

In the domain 0 ~ 0 ~ y, we employ the repre­
sentation (4.9)-(4.14). Let us evaluate first the 
contribution from (4.10). As we have seen in connec­
tion with the analogous terms in N, the main contri­
bution to the integrals in (4.10) arises from the 
neighborhood of A = p, so that we may employ the 
asymptotic expansions given in Appendix A. 

In particular, it follows from (All) and from the 
corresponding expansion for H12)(x) (obtained by 
changing i -+ -j everywhere) that 

where 

~ = yeA - P), (4.55) 

and we have introduced the abbreviations 

We have also made use of the Wronskian relation 
(Ref. 36, p. 446): 

W[Am, Am] = i/21T. (4.57) 

Similarly, employing (3.4), (All), (A12), and the 

where 

i Jo foo = + . 
r 11100 0 

(4.65) 

As we have seen in connection with (4.10), 0"100 may 

36 Handbook of Mathematical Functions, M. Abramowitz and 
1. A. Stegun, Eds. (National Bureau of Standards, Washington, 1964). 

analogue of (4.28) for [2 oc], we find 

where 
A' = Ai' (e2i~/30. (4.59) 

Finally, combining (4.3) with (4.54) and (4.58), 
we find 

(4.61) 

In the angular domain under consideration, the 
uniform asymptotic expansion [N, Eq. (el!)] of the 
Legendre function becomes 

PA_t(cos 0) = (O/sin O)tJo + O(y4), (4.62) 

where we have employed the abbreviation 

Jo = Jo(PO + (O/y)O = Jo[PO(l + Ey2)]. (4.63) 

Substituting the above results in(4.10), we obtain 

(4.64) 

be any direction in the second qlladrant. It is con­
venient to choose it in such a way that the integrands 
in (4.64) decrease as rapidly as possible away from 
~ = O. It follows from the asymptotic behavior of the 
Airy function [N, Eg. (D4») that the best choice is 

a1 = e2i~/3, (4.66) 
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so that the path r is composed of a straight line from 
e2i1T/3 00 to 0 and the positive real axis from 0 to 00, 

as in N (Fig. 10). All the integrands in (4.64) then 

behave like ( 4 I rli) exp -3 '0 

for large I ~I, so that only the domain I" ~ 1 gives an 
appreciable contribution. 

The first two integrals in (4.64) correspond to the 
Fock-type functions that appeared in N [Eq. (9.13)]. 
Both these and the remaining integrals can be reduced, 
by partial integration, to generalized Fock functions, 
defined by 

ei1T/6 r ~m 
F m.n({3, e) = 27T Jr Ai2 (e2i1T/3~) J n(fJe + (e/y)O d~, 

(4.67) 

where m and n are integers. The reduction is per­
formed in Appendix C. Taking into account (C3)­
(C7), Eq. (4.64) becomes 

!Ol({3, e) + !02({3, e) 

= i(_e )![_ J1({3e) + !(l + ~)F 
sin e e e 2M2 0.1 

Y i( 4N2 - 3)y2 
+-F - F 60 2.0 6M3 1.0 

On the other hand, fol{3, e), as defined in (4.11)­
(4.12), has already been evaluated in N [Eqs. (9.21) 
and (9.70)]: 

which corresponds to the well-known forward 
diffraction peak. 

The residue-series contributions are given by 
(4.13) and (4.14), where the Legendre function may 
be replaced by N, Eq. (ClI). Taking into account (4.39) 
and (4.46), and adding the results to (4.68) and (4.69), 
we finally get from (4.9) 

x f (-l)mLexp [-2i(rn + l)nA~]exp [-2e-i1T/3cosh-1 N(Q(/2)txn]J0(A~e), N> 1, 0 ~ e ~ y. 
m=O n 

For N -+ ioo, this reduces to the result found for an 
impenetrable sphere in N [Eq. (9.42)], where only the 
first two terms of (4.64) were taken into account. 

In particular, within the diffraction peak region 
o ~ e «y, we can expand the generalized Fock 
functions in power series in the small parameter ely, 
by substituting in (4.67) the Taylor expansion 

00 

I n({3e + (e/y)O =LJ<;')({Je)(e,!y),'/pL (4.71) 
1'=0 

Since the main contribution to the integrals arises 
from I" ~ 1, the resulting series is rapidly convergent 
for ely « 1. 

It follows from N [Eqs. (8.23) and (8.26)] that 

(4.72) 

(4.70) 

where 

pMp _ 1 = 1 for p = 0, Mo = 1.2551ei1T/3, 

M1 = 0.5323e2i1T/3, M2 = 0.09352. (4.73) 

The values of the coefficients Mp are taken from 
WU,37 who also computed them for higher values 
of p. 

Substituting (4.71) and (4.72) in (4.67), we find 

Fm".({J, 0) = f(rn + p) Mmtp_1J<;')({Je)(~)". (4.74) 
,,=0 p! y 

Replacing the generalized F ock functions in (4.70) 

37 T. T. Wu, Phys. Rev. 104, 1201 (1956). 
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Here, we have approximated JO(}"nO) ~ Jo(/30) in the 
first residue series of (4.70), and we have entirely 
neglected the contribution from the second residue 
series, which is indeed negligible under the present 
conditions. 

For N -+ ioo, (4.75) agrees with N [Eq. (9.33)], to 
the order of accuracy computed there. The first term 
of (4.75), which corresponds to the forward diffraction 
peak, again dominates the amplitude for 0 «y. 

Finally, for 0» /', (4.70) goes over smoothly into 
(4.53). This has already been proved in N [Eq. (9.41)], 
for the dominant term in the amplitude, which is the 
same as here, so that the proof need not be repeated. 

The results (4.53) and (4.70) give the value of/o(P, 0) 
for all directions, 0 ~ 0 ~ Tr. We see that the domain 
0,....., y is a normal (Fock-type) transition region. In 
this region, tables of generalized Fock functions 
would be required for a numerical evaluation. 

E. Behavior for N < 1 

Let us now take N < 1. In this case, as shown in 
Fig. 8(b), all rays incident at an angle 01 > Oz are 
totally reflected, where Oz is the critical angle, given 
by (4.1). There is a corresponding shadow boundary 
at 0 = 0 t ' where 

0t = Tr - 201 = 2 cos-1 N. (4.76) 

The same shadow boundary, as will be seen later, 
appears in all the terms of the Debye expansion. 

The existence of this shadow boundary leads to a 
subdivision into three different angular regions: 

(i) 

(ii) 

(iii) 

O-Ot»~O; 

10 - 0tl :(; ~O; 

0t - 0» ~O. 

(4.77) 

We shall see that the width ~O of the transition region 
is again given by (4.2), although it is not a normal 
transition. From the point of view of geometrical 
optics, region (iii) is where total reflection occurs, 
whereas only partial reflection takes place in (i). 
Furthermore, there is still a forward diffraction peak 
in region (iii), so that we still have to distinguish 
() » y and () "..; y within it. 

As shown in Fig. 10, the distinction between 
regions (i) and (iii) is reflected in the position of the 
saddle point associated with (4.21). The saddle point 
X is still given by (4.27), so that X < IX in region (i) 
(point Xl in Fig. 10) and X > IX in region (iii) (point 
X2 in Fig. 10). The path of integration f' crosses the 
real axis at the saddle point, at an angle of -Tr/4, 
and it must begin and end at infinity outside of the 
shaded regions in Fig. 10. [The asymptotic behavior 
of the integrand of (4.21) follows from Appendix B 
and from N (Appendices A and C). The shaded 
regions are those where the integrand diverges at 
infinity, where 'YJl and 'YJ2 are defined by (B2).] Thus, 
as we go through the transition region (ii), the path f' 
sweeps across the poles A~; consequently, as had 
already been mentioned in Sec. 3D, there is no way to 
avoid the contributions from these poles. 

Let us consider first the behavior of /o(P, 0) in 
region (i), still using the representation (4.20)-(4.23). 
The corresponding path of integration f~ in (4.21) 
(Fig. 10) does not differ in any way from the path for 
N > 1, so that we obtain precisely the same result 
(4.35) as before. The only question to be considered 
is that of the domain of validity of this result. 

The expression (4.29) for R22 depends upon the 
validity of the Debye asymptotic expansion for 

1l<f 
t 
~, 
~ 

" , 
- .... 1\ \\ 

• 

1m. 

; 

, 
/>.. .... 

/ 

FIG. 10. For N < 1, the path of integration in (4.21) must begin in 
the upper half-plane, to the left of the shaded region, and end in the 
lower half-plane, to the right of the shadej region, going over a 
saddle point 0 that, for e > e" is to the left of;' = IX (e.g., at X,) 
and, for e < e" is to the right of;' = IX (e.g., at i..). X -poles. 
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[2 ex]. Thus, 

(4.78) 

must be satisfied within the relevant portion of the 
domain of integration. The distance of closest ap­
proach from)" = ex to the path of integration is of the 
order of ex - X, so that (4.78) must be valid for A = l 
Taking into account (4.27) and (4.76), this leads to 

(4.79) 

where M' is defined by (3.31). Exactly the same 
condition is found from the requirem~nt that the 
first correction term in the WKB expansion (4.35), 
involving the denominator 

P(N2 
- cos2 OI2)! = P(cos2 (OtI2) - cos2 (OI2»!, 

(4.80) 

must be small. 
According to (1.1), the domain (4.79) falls within 

region (i). [It may overlap with (ii), depending on the 
value of N.] On the other hand, as we have seen in 
(4.52), the approximation (4.35) remains valid up to 
o = 17. 

The contribution fo.res from the poles An is still 
given by (4.41), the only difference being that the 
substitution (3.30) must be made in the expression 
(3.29) for the poles. The physical interpretation 
remains unchanged: these terms correspond to the 

(1) PARTIAL 
~EFLECTloN 

REGION 

surface waves excited by the tangentially incident 
rays, and, as before, their damping is determined 
almost completely by the geometry. 

In contrast with the case N > 1, however, the poles 
A~ now give a significant contribution, corresponding 
to an entirely new type of sur'face waves. The result 
for f~.re8 is given by (4.23), where (4.46) is now to be 
replaced by 

r~n ~ -(2NIM')exp(-2iM'P + 2iA~COS-l N), 

(4.81) 
so that (4.48) becomes 

/" oreS< p, 0) 

2ei 
.. /

4N! ( 217 )! 
~ -. - exp (-2iM'f) 

M' P sm 0 

where 

X {~exp (- iA~'t.o) + j:} _l)m 

X ~ [exp(-iA~'tm) - ieXp(-iA~'l.m)]}, 

17 - 0 » p-!, (4.82) 

'tm = 2m17 - Ot ± 0, m = 0, 1,2, .. " (4.83) 

and 0t is given by (4.76). 
The geometrical interpretation of the angles 't.o 

and '1.1 is shown in Fig. Il(a). The surface waves in 

Q 

FIG. 11. Geometrical interpretation of (4.82) and (4.83). (a) The angles ,to and 'i:, correspond to the rays R,S,S~U, and R.S.S; U •• 
respectively (0 > 0,). The path difference with respect to the central path Ro0Uo is OA + OB. The subdivision into regions is also indicated. 
The diffracted ray R,S,S~S;U~ appears in the second term in the Debye expansion [cf. Eq. (5.66)]. (b) For 0 < 0" ,to is to 'be replaced by 
,t, = 21T + ,to. According to the geometrical theory of diffraction, the diffracted ray would propagate clockwise, as S,PS~ , corresponding 
'~~o = 21T - ,t;, = -,t;o. 
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(4.82) are excited by the critically incident rays 
R1S1, R2S2 • Their complex propagation constant A.~ 
is given by (3.35), so that they travel along the surface 
on the inner side, with phase velocity slightly smaller 
than c/N and angular damping constant 

~ (.../3/2)(rx/2)ixn • 

In terms of diffracted rays, the surface ray excited 
by the critically incident ray R1S1 gives rise to the 
diffracted ray S~Ul in the direction e, leaving the 
surface at the critical angle el , so that the arc SlS~ 
travelled along the surface corresponds to the angle 
~t.o; similarly ~i.m includes m additional turns around 
the sphere. The path difference with respect to the 
central ray RoOUo [Fig. 11 (a)] is OA + OB = 
2a cos el = 2M'a, which accounts for the phase 
factor exp (-2iM'fJ) in (4.82). Similar considerations 
apply to the ray R2S2S;U2 • 

These diffracted rays obey a peculiar "law of 
refraction": although the magnitudes of the angles of 
incidence and refraction are given by Snell's law, 
they have opposite signs: both upon entering and 
upon leaving the surface, the incident and "refracted" 
rays lie on the same side of the normal! 

This result is in disagreement with the geometrical 
theory of diffraction.16

•33 According to this theory, 
the diffracted rays associated with the critically 
incident rays R1S1 and R2S2 would obey the ordinary 
law of refraction both at the point of excitation and 
at the point where they leave the surface. This is 
illustrated in Fig. 11 (b), which refers to the case 
() < e t : according to the geometrical theory of 
diffraction, the diffracted ray would travel clockwise, 
along the path SlPS~, corresponding to the angle 
~~;o = - ~t.o; according to the present results, it 
follows the anticlockwise path SlQS~, corresponding 
to the angle ~t.l' Thus, although the entry and exit 
points are the same, the results are quite different. 

In the case of a plane interface (Fig. 12), a critically 
incident ray RS gives rise, as is well known, to a 
surface wave SV travelling along the interface in the 
optically rare medium, so that the corresponding ray 
obeys Snell's law. At each point along its path (such 
as S', S" in Fig. 12), the surface wave sheds rays back 

R 

RARE MEDIUM 

FIG. 12. The Schmidt head wave. 

into the dense medium at the critical angle, again 
obeying Snell's law. This gives rise to a conical wave 
in the dense medium, the Schmidt head wave, which 
has been investigated theoretically and experimentally 
(Ref. 4, pp. 366 and 380). 

Thus, if we approximate the sphere surface locally 
by its tangent plane at the entry and exit points (as is 
done in geometrical optics), we are led to the predic­
tion of the geometrical theory of diffraction. It seems 
at first sight very surprising that the surface waves 
actually found in (4.82) travel in the opposite sense 
around the sphere. 

It was precisely to avoid the seemingly "unphysical" 
contributions from the poles A.~ that Franz and Beck­
mann proposed their modified contours. However, 
as has already been seen in Sec. 3D, their proposal 
does not achieve its purpose, nor does it lead to the 
diffracted rays predicted by the geometrical theory of 
diffraction. Such rays would correspond to poles in 
the first quadrant, near A. = rx. 

Chen33 has tried to identify such poles with the 
Regge poles closest to A. = rx in Fig. 4, by enclosing 
them ~ith the contour C' before making the Debye 
expansIOn. However, as was mentioned in Sec. 3D, this 
is not allowed, because the Debye expansion diverges 
on C' (also, C' is not suitable for applying the saddle­
point method). Furthermore, according to the 
discussion in Secs. 2 and 3, the Regge poles associated 
with the original partial-wave series have a very 
different physical interpretation as compared with 
those associated with the Debye expansion. 

Streifer and Kodis38 found surface waves similar to 
those of Fig. 11 (a) in the case of a dielectric cylinder, 
but considered their physical interpretation un­
satisfactory. 

Since the path of integration in the saddle-point 
method must sweep across the poles A.~ (Fig. 10), 
It IS clear that one cannot obtain the geometrical­
optics contribution without including also the contri­
butions from these poles, so that any attempt to get 
rid of them is of no avail. 

The interpretation of the surface waves found in 
(4.82) in terms of diffracted rays disagrees with the 
geometrical theory of diffraction only with respect 
to the sense of propagation around the sphere. There 
is, however, a very good physical reason why this 
should indeed be so. 

Physically, the role played by the surface waves is to 
describe the field penetration into shadow regions: 
their exponential damping is characteristic of the 
shadow produced by a curved surface (cf. N, p. 83). 

8. W. Streifer and R. D. Kodis, Quart. Appl. Math.ll,193 (1964). 
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They are always excited at the border between lit and 
shadow regions on the surface. Therefore, one must 
expect that surface waves always travel away from the 
shadow boundary into the shadow (rather than into 
the lit region). Otherwise, a smooth transition between 
lit and shadow regions, with the exponential damping 
starting at the boundary and proportional to the angle 
of penetration into the shadow, would not be possible. 

For an impenetrable sphere (N, p. 39), as well as 
for a transparent sphere with N > I, the requirement 
of propagation into the shadow always leads to 
agreement with the geometrical theory of diffraction. 
For N < 1, however, the domain 0 > Ot is a shadow 
region for transmitted rays [cf. Fig. 13(b)], and the 
requirement that the surface waves excited at Sl and 
S2 (Fig. II) must propagate into the shadow leads 
precisely to the sense of propagation that we have 
found. The geometrical theory of diffraction would 
lead to surface waves propagating into the lit region, 
which is physically unacceptable. 

Since the geometrical theory has met with consider­
able success in the treatment of a large class of prob-

lems, it would be interesting to modify its formulation, 
taking into account the physical requirements about 
the sense of propagation of surface waves. The local 
behavior of a ray is determined not only by the tangen­
tial plane, but also by the distinction between shadow 
and lit sides. 

We also see now that, although f~.res(fJ, 0) is 
negligible for N> 1, the expression (4.48) is simply 
the analytic continuation of the result (4.82) found for 
N < 1 [cf. Eq. (3.30)]. 

The domain where the residue series (4.82) IS 

rapidly convergent is determined by the condition 

lIm A{I 'to» I, 

i.e., according to (3.35) and (4.83), 

o - 0 t » (N(J)-! "" y. (4.84) 

Finally, in order to obtain expressions that remain 
valid up to 0 = 7T, it i& nece~sary to employ the 
uniform asymptotic expansion [N, Eq. (CII)] of the 
Legendre functions. Putting together all of the above 
results, we finally obtain 

fo«(J, 0) ~ - !([N2 - cos
2 

(OI2)]! - s~n (012») exp (-2i(J sin (Oi2» 
2 [N2 - cos2 (OI2)]! + sm (012) 

X 1 + ~ _ - cos V 3 + <9«(J-2) _ e_ 7T - v { . [1 2N2 2 (DI2) ] } i1T/3( D)! 

2(J sin3 (012) (N2 - cos2 (012»" y sin 0 

X i (_1)m L (a~)-2 exp [i(2m + I )1rAn]JO[An( 7T - 0)] + 47Ti N: (7T. - O)! exp (-2iM' (J) 
m=O n M sm 0 

00 

X L (_1)m L exp [iA~Ot - i(2m + I )7TA~]Jo[}'~( 7T - 0)], N < 1, 0 - Ot» y. (4.85) 
m=O n 

Let us now go over to region (iii) [cf. Eq. (4.77)], 
where, according to geometrical optics, total reflection 
takes place. We again have to treat separately the 
diffraction peak region 0 ~ 0 ~ y. For 0 » y, we can 
still employ the representation (4.20)-(4.23), but the 
saddle-point path r~ for the evaluation of (4.21) is 
now on the other side of the line (Fig. 10) where the 
poles A~ are located. Thus, we have to take into 
account their additional residue-series contribution, 
and (4.21) becomes 

where fo.i(J, 0) = lo./(J, 0) - f~.o«(J, 0), (4.86) 

.!.. r (1) 1o.u<(J, 0) = - (J Jr/o(A, (J)QA_!(COS O)A dA, (4.87) 

f~.o«(J, 0) = - 2; ~ A~r~nQ~l!,_!(cos 0) 

~ 2ei1T /4 N!(~)!exp (-2iM'(J) 
M' (J sm 0 

X L exp ( - iA~'t.o), (4.88) 
n 

and we have made use of (4.81) and N [Eq. (C7)]. 
The last term should be grouped together with 
f~.res«(J, 0), so that we have to make the following 
replacements in (4.20): 

fO.g~j~.g; f~.re,~1~.re8 =f~.m -f~.o, (4.89) 

where f~.res«(J, 0) is given precisely by (4.14). This 
follows from (4.23), (4.88), and the identity N 
[Eq. (6.33)]. 

According to (4.88), the substitution of f~.res by 
J~.res amounts precisely to subtracting out from (4.82) 
the residue series in 't.o , which would diverge for 
o < 0t. The first term in the remaining residue series 
J~,res then corresponds to the angle 't.l' as it should, 
according to Fig. 11 (b). Thus, the residue series 
J~,res is rapidly convergent for'all 0 < 0t. 

The saddle-point evaluation of (4.87) is entirely 
similar to that which led to (4.35), except that, in 
(4.29), we have to make the substitution 

(cx.2 - A2)! ~ -i(A2 - cx.2)!. (4.90) 
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Correspondingly, (4.35) is replaced by 

10 i{3, e) = _ ! ([COS
2 

(eI2) - N2]~ - i sin (e I2)) exp (-2i{3 sin (eI2» 
. 2 [cos2 (eI2) - N2]~ + i sin (eI2) 

X {I + ~[ 1 + i (2N2 - cos
2 

(eI2»] + O(P-2)} 
2P sin3 (eI2) (cos2 (eI2) - N 2)! ' 

N < 1, et - e» N 1y2/M', e» y, (4.9\) 

where the restriction on et - e arises in the same way as (4.79). As ought to be expected, we find the uni­
modular Fresnel reflection coefficient associated with total reflection [cf. Eq. (4.36)]. 

On the other hand, nothing changes in the residue series associated with the poles An' so that we finally 
obtain [cf. (4.41)] 

fo(P, e) ~ - !([COs
2 

(ef2) - N21~ - i sin (eI2)) exp (-2iP sin (eI2» 
2 [cos2 (eI2) - N2]~ + i sin (eI2) 

{
I + 2-[ 1 + . (2N2 - cos

2
(eI2»] 0 {3-2} 1 i1r/12( Y )~ 

X 2p sin3 (ef2) I (cos2 (eI2) _ N2)~ + ( ) + lle 7T sin (j 

X {-i ~ (a~)-2 exp (iAnvci) + ~1( _l)m ~ (a~)-2[exp (iAnV;;;) - i exp (iAnV;;;)]} 

+ 2e-i1r /4 N~ (~)~ exp ( - 2iM' P) i ( _l)m L [exp ( - iA~~tm) + i exp ( - iA~~1.m)], 
M f3 sm e m=l n 

In the region 0 ~ e ~ y, where the forward 
diffraction peak is contained, /o(P, e) is still given by 
(4.70), provided that we make the substitution (3.30) 
and that (4.46) is replaced by (4.81) in the residue 
series at the poles A~. 

There remains only for us to consider the transition 
region (ii) in (4.77): 

Ie - etl ~ y. (4.93) 

In this region, the approximation (4.29) for R22 is no 
longer valid within the range of the saddle point: 
the Debye asymptotic expansions have to be replaced 
by [cf. (3.33)] 

[2 oc1 ~ ei1r /3 (~)\n' Ai (e-2i1r/3~), (4.94) 

where 
(4.95) 

The main contribution to the integral in (3.21) still 
comes from the neighborhood of the saddle point 

X = P cos (eI2) ~ P cos (e tI2) = Nf3 = oc, (4.96) 

so that we may replace A by oc in slowly varying 

factors. Thus, (4.29) is replaced by 

1 + K
2 1n' Ai (e-2i1r

/
3S) 

R2iA, P) ~ 1 _ K2ln' Ai (e-2i.-j3~) (4.97) 

in first approximation, where 

K2 = e-i1r/6NiyIM'; IK21« 1. (4.98) 

The remaining approximations employed m (4.31) 
are still valid. 

As e ranges through the transition region (4.93), 
the saddle-point path of integration sweeps across the 
poles, as shown in Fig. 10. Let us make the change of 
variable (4.30) and expand everything around the 
saddle point: 

w - el2 = e-i1r
/
4u[P sin (eI2)1-!; 

(4.99) 
where 

(4.100) 

Then, we finally get 

(4.101) 
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SHADOW 
--- OF' --Di R ECTL Y""--
TRANSMITTED 

2' 

(a.)N>1 (h)N<1 

FIG, 13, Structure of the lit and shadow regions in the geometrical-optics approximation. for the second term of the Debye expansion, 
corresponding to directly transmitted rays, such as 2'. (a) N> I; (b) N < I. In both cases, the shadow boundary is 0, = 7T - 20 z , where 
o z is the critical angle. 

where no is the last pole that has been swept by the 
path of integration. When all the poles have been 
swept (e.g., for () < ()t), their total contribution is 
given by (4.88), so that the terms in (4.82) that would 
be poorly converging are gradually subtracted out. 
Otherwise, (4.82) and the corresponding expression 
for !o.res({3, () remain valid. 

The first term (unity) in the expression within curly 
brackets in (4.101) is the dominant one. The other 
term, according to (4.98), is a small correction, which 
contains the effects due to the poles not yet subtracted 
out, as well as the corrections to the reflection co­
efficient. In fact, within the present order of approx­
imation, the poles correspond to the roots of the 
denominator in the integrand. For () > ()t, there may 
be several poles within the range of the saddle-point. 

The asymptotic expansion of integrals containing 
poles in the neighborhood of a saddle point has been 
investigated by several authors (cf. e.g., Ref. 39). 
The transition term representing the effect of the 
poles can be expressed in terms of error functions 
with complex argument. We shall not carry out this 
procedure explicitly for (4.101). 

As wiII be seen later, the structure of the transition 
region is actually quite complicated, because all 
higher-order terms in the Debye expansion lead to the 
same shadow boundary for N < 1, so that all their 
contributions should be taken into account. 

This concludes the discussion of the asymptotic 
behavior of!o({3, 0). We see that it can be determined 
for all values of 0, 0 ~ 0 ~ TT, both for N> 1 and 
for N < 1. 

81 B. L. van der Waerden, Appl. Sci. Res. 82, 33 (1950). 

5. THE SECOND TERM OF THE DEBYE 
EXPANSION 

A. Preliminary Considerations 

The second term of the Debye expansion is given by 
either one of the equivalent representations (3.23) 
and (3.26), with p = 1. In the geometrical-optics 
approximation, it is associated with rays that are 
directly transmitted through the sphere, without any 
internal reflection, like the ray 2' in Fig. 5. 

The structure of the lit and shadow regions for this 
class of rays is shown in Fig. 13(a) for N > 1 and in 
Fig. 13(b) for N < 1. In both cases, there is a shadow 
region (shown shaded in Fig. 13), which is inaccessible 
to directly transmitted rays. For N> 1, the shadow 
boundary corresponds to transmitted rays associated 
with tangentially incident rays at T1 and T2 [Fig. 
13(a)]. According to geometrical optics, these rays 
are critically refracted and reemerge tangentially at 
T~ and T~, respectively. For N < 1, the shadow 
boundary is associated with the critically incident rays 
at S1 and S2, which are totally reflected; it is the 
same one already found for the first term of the 
Debye expansion and shown in Fig. 8(b). 

The direction of the shadow boundary is given in 
both cases by [cf. Eq. (4.76)] 

(5.1) 

where 01 is the critical angle. Notice, however, that, 
while 01 is given by (4.1) for N < 1, it is given by 

sin 01 = lIN (5.2) 

for N> 1. 
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Thus, we expect to find three different regions, as in 
(4.77): 

(i) 

(ii) 

(iii) 

0- 0t» ilO; 

10 - 0tl ,.; ilO; 

0t - 0» ilO, 

(5.3) 

where ilO is the angular width of the transition domain 
(ii) between the shadow region (i) and the lit region 
(iii). We shall see that this is a normal transition, so 
that 

ilO '" y. (5.4) 

In the shadow region (i), the amplitude can be 
reduced to a pure residue series. Since this region 
extends up to 0 = 7T, we employ the representation 
(3.26). Changing A to - A in the sum from m = - 00 

to -1, and taking into account (3.10), we find that 
(3.26) becomes 

fl({3, 0) = - - I (_1)m V(A, (3)P ;.-I( -cos 0)' 1 <Xl f<Xl 
fl m=O -<Xl 

X exp [i(2m + l)7TA]A dA, (5.5) 

where U(A, (3) is given by (3.24). 
The asymptotic behavior of U(A, fl) as II.I -- 00 in 

the upper half-plane is shown in Fig. 14. We see that 

-Ol o 1. cC 

Cb) N < 1 

"l1:-'J>-J 

l.f 
, pID 

, 
I -+).', 

i·(~t 
I 

" -+0 GO+it 

FIG. 14. Asymptotic behavior of U(A. (J) [cf. Eq. (3.24)1 as IAI -+ 
IX) in different regions of the A plane. (a) N > I; (b) N < I. U -+ IX) 

in the shaded regions and U -.. 0 elsewhere (apart from the poles). 
The paths of integration in (5.11) and (5.15) are replaced by sym­
metric paths from - p IX) to p oc> prior to the saddle-point evaluation; 
one-half of these paths is shown. x-poles; O-saddle point; 
- - - steepest descent path. 

U -- 0 everywhere, except in the shaded regions in 
the neighborhood of the imaginary axis, where it 
diverges like 

exp (c IAllln 11.1), c = const > O. 

On the other hand, according to N [Eq. (C8)], 
eidP;._I( -cos 0) behaves like eiA8 as II.I -- 00 in the 
upper half-plane, so that, for any 0 > 0, the path of 
integration in (5.5) can be closed at infinity, reducing 
the integrals to pure residue series:. 

fl({3,O) = fl.re.({3, 0) + n.res({J, 0), (5.6) 
where 

27Ti <Xl 
fl.rc.(fJ, 0) = - - I ( _1)m I residue {AV(A, (3) 

(3 m=O n 

X exp [i(2m + 1 )7TA]P ;.-I( -cos 0) Ln' 
(5.7) 

27Ti <Xl 
f~.re'(fJ, 0) = - - I (_1}m I residue {AV(A, (3) 

fJ m=O n 

X exp [i(2m + 1}7TA]P;._I( -cos O)L;. .... 

(5.8) 

[Actually, of course, we have to consider a sequence 
of contours passing between the poles, as was done in 
N (Sec. IV). For a more careful discussion of this 
point, see Ref. 40.] This representation will be em­
ployed in the shadow region (i). 

In the lit region (iii), we start from (5.5). We shift 
the path of integration to a straight line above the 
real axis (from - 00 + iE to 00 + iE, E > 0), and we 
substitute the identity N [Eq. (C6)]: 

P ;.-I( -cos 0) = - iei .. ;.p ;.-I( cos 0) 

+ 2i cos (7TA)Ql~I(COS 0). (5.9) 

[This shift is necessary because of the singularities 
of Ql~l(cOS 0) on the negative real axis.] Taking into 
account also the identity 

00 

I (_1)m cos (7TA) exp [i(2m + l)7TA] = t, 
m=O 

1m A > 0, (5.10) 

valid over the new path of integration, we find 

ft({3,O) = - ~ f<Xl-i£ V(A, (3)Ql~l(COS 0)1. dA 
fJ -oo+iE' 

27T 00 - - I (_l)m I residues {AV(A, (3)P;._I(cOS 0) 
(3 m=O n 

X exp [2i(m + l)7TA]};'n._;'n" (5.11) 

In (5.11), the integrals containing p;._!(cos 0) 
have been reduced to residue series at the poles 

4. R. F. Goodrich and N. D. Kazarinoff. Proc. Cambridge Phil. 
Soc. 59, 167 (1963). 
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An' - A~ by closing the path of integration at infinity 
in the upper half-plane. This is allowed, according to 
Fig. 14, due to the extra convergence factor ei1TA in the 
first term of (5.9). Furthermore, in the integral 
containing Qi~Vcos 0), the path of integration has 
been shifted from (- 00 + if:, 00 + if:) to a path 
symmetric about the origin (- 00 + if:, 00 - if:), 
by crossing the positive real axis, which is allowed, 
because Qi~!(cos 0) is regular there. 

If we now split the path of integration at the origin 
and change A to -A over one-half of it, making use 
of the identity 

Qi~!( cos 0) - Q~2L!( cos 0) = i tan (?T A)P A-!( cos 0), 

(5.12) 

which follows from (5.9), we find 

- i J oo-i< U(A, tJ)Qi~!( cos O)A dA 
(J -OO+if 

= - U(A, tJ)PA_!(cos 0) tan (?TA);' dA. (5.13) 1 fOO

-

i
< 

tJ 0 

Substituting this in (5.11), we see that the resulting 
expression is regular down to 0 = O. 

By an entirely similar procedure, but employing, 
instead of (5.9), the identity N [Eq. (C5)], 

_!( -cos 0) = ie-i1TAP A_!(COS 0) 

- 2i cos (?TA)Q~~!(cos 0), (5.14) 

we find 

2?T 00 + - Z (_1)m Z residues {AU(A, tJ)P A-!( -cos 0) 
tJ m=O " 

X exp [-2i(m + l)?TA]}_A n .},,,·, (S.1S) 

where the residues are now taken at the poles in the 
lower half-plane, A = -An' A = A~. Similarly to 
(5.13), we have 

_ i JOO+i< U(A, tJ)Q~~!(cos O)A dA 
f3 -oo-i€ 

= - - U(A, tJ)PA_!(cos 0) tan (d)A dA. (5.16) 1 fOO+i< 
tJ 0 

B. Behavior for N > 1 in the Shadow Region 
(0 - 0t »y) 

In this region, we shall employ the representations 
(5.6)-(5.8). According to (5.7), (3.24), (3.5), and 
(3.8), we have 

f (R, 0) = 32i ~ (_I)m " residue {CIm(A, tJ, e)} 
1. r~s V R3 ~ k [d(- R)]2 ' ?Tv m-I n A, v An 

(S.17) 

where dCA, tJ) is given by (4.38) and 

CAR 0) = A exp [i(2m + l)?TA]P A-!( -cos 0) 
Im( 'v' [H~U(tJ)Hi2)«(XW' 

(S.18) 

A similar expression is valid for f~.res(fJ, 0), with An 
replaced by - A~. In both cases, the poles are double 
poles. 

The residue of the expression within curly brackets 
in (5.17) at a double pole is given by (cf. Ref. 29, 
Appendix II) 

'd {C1m(A, tJ, e)} C1m(Clm d) (S 19) reSI ue 2 = -2 - - -, . 
[dCA, fJ)] J'n d Clm d An 

where the dots denote partial derivatives with respect 
to A and all quantities in the second member are to be 
evaluated at the poles An' 

The evaluation can be carried out by employing the 
asymptotic exp~sions N, Eq. (A16) for Hj2)(rx), 
N, Eq. (Cll) for p;._!( -cos 0) and the expansions 
for HjI)(fJ) and its derivatives given in Appendix A. 
Retaining only the dominant term in each of these 
expressions and neglecting corrections of order y, we 
find the following final result. [The evaluation of the 
dominant term in the residue-series contribution at the 
poles An for an arbitrary term of the Debye expansion 
will be carried out in Paper II (Appendix C).] 

fI.res(tJ, 0) 

~ 2i e
i1T13

(?T. - e)! exp (2iMtJ) 
yM sm 0 
00 

x I (_l)m I (a~)-2 exp {iAn[(2m + 1)?T - 0el} 
m=O n 

The above expressions could also have been obtained x {[(2m + \)?T - 0t]Jo[An(?T _ 0)] 
by starting from (3.23) instead of (3.26). 

We shall see that the representations (5.11) and + i(?T - O)JI[An(?T - e)]}, e - Of» y, e S ?T, 
(5.13) are appropriate in the lit region for N> 1, (5.20) 
whereas (5.15) and (S.16) will be employed forN < 1. where 0t is given by (5.1), (5.2), i.e., 
Let us start by considering the behavior of the ampli-
tude in the shadow region for N> 1. 0t = 2 cos-l (lIN). (5.21) 
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In particular, for 1T - 0» fJ-1, this result can be 
simplified by inserting the asymptotic expansions for 
the Bessel functions, which lead to 

. 1 

e"r/12 ( y )" 
fl.rcifJ, 0) ~ - M 1T sin 0 

X exp (2iM fJ){ ~ (a~)-2~i.o exp (O'n~to) 
en 

+ z (_1)m Z (a;,)-2[~tm exp (i}'n~tm) 
m=l n 

+ i~l.m exp (iAn(t: m)]}, 

o - 0/ »y, 1T - 0» (3-\ (5.22) 
where 

~tm = 2m1T - ()t ± (), (5.23) 

as in (4.83) [but note that 0t is now given by (5.21) 
instead of (4.76)!]. 

By analogy with (4.43), this result can be rewritten 
as follows (cf. also Ref. 29): 

h. res«(3, () 

= _ __ i -!eXP (2iM(3){-i I D~D21D12 
(sin 0) n 

X l'l,o+exp (iAn~to) d~ + il( -I)'" ~ D!D21D12 

X [l~l.m-exp (iAn~l.m) d~ 
r + - il"'''' exp (iAn~tm) dip]}, (5.24) 

where D~ is given by (4.45) and 

D2ID12 = 2/M. (5.25) 

The physical interpretation of these results in terms 
of diffracted rays is illustrated in Fig. 15. The incident 
rays tangential to the sphere at T 1 and T 2, after 
penetrating into the sphere at the critical angle 01 , 

reemerge tangentially at T~ and T~, respectively, 
defining the shadow boundary. At the points of 
emergence, they launch surface waves, travelling from 
the shadow boundary into the shadow. A typical 
diffracted ray of this type is T2T~T;B in Fig. 15. 

However, before penetrating into the sphere, a ray 
can also describe part of its path as a surface wave. 
Rays of this type are generated by diffracted rays 
associated with the first term of the Debye expansion 
(Fig. 9), which, after critical refraction into the 
sphere, reemerge as surface waves, to complete the 
remainder of their path along the surface, before 
leaving it tangentially in the direction of observation. 

A typical example is TS~t;T;B in Fig. 14. 

U) SHADOW REGION 

A 

( iii) 
UT 

REGION 

FIG. 15. Physical interpretation of (5.22) and (5.24). The limiting 
rays TIT! and T2T~ that define the shadow boundaries excite surface 
waves propagating into the shadow, generating the diffracted rays 
T1T1TrA and T. T;T~B in the direction e. T.he corresponding angles 
described along the surface are ~l.l and ~to, respectively. There are 
infinitely many other possible paths for diffracted rays belonging to 
this class. One such path, T 2'I'~'r~T~B, corresponding to the same 
angle sto, is shown in broken line. The subdivision into regions is 
also indicated. 

Since the total angle ~l~ m described along the 
surface can be broken up into two parts in an infinite 
number of ways, there is an infinite class of diffracted 
rays of this type, and the resultant amplitude is the 
sum of all their contributions. The contribution from 
all paths such that an angle between Ip and Ip + dip is 
described before critical refraction is proportional to 
dip. Since the maximum value of Ip is the total angle 
S'tm described, this accounts for the integrals appear­
ing in (5.24). 

The factor D~ arises from the excitation of the 
diffracted wave (e.g., at T2) and its reconversion into a 
tangential ray (e.g., at T;). The factors D21 and D12 
represent the transmission coefficients of surface 

waves into the sphere (e.g., at t~) and out of the 

sphere (e.g., at t;), respectively. 
The factor exp (2iM(3) represents the phase shift 

corresponding to the "shortcut" through the sphere 

(e.g., TIT~ or t~t;). The factor -i corresponds to the 
phase decrease by 1T/2 experienced by a diffracted 
ray such as Tl T~T; A as it passes through the pole T2 , 

which is a focal point for diffracted rays. 
According to (5.8),f~.res«(3, 0) is given by an expres­

sion identical to (5.17)-(5.19), except that the residues 
are now to be evaluated at the poles -A;,. Employing 
the asymptotic expansion corresponding to (Al) for 
Hi2 ) (a.) , the Debye asymptotic expansion given in 
N (Fig. 15), for Hl1 ) (fJ), and N [Eq. (ell)] for 
p .. _!( -cos (), and keeping only the dominant terms, 
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we find, with the help of (3.33)-(3.35), 

n.reiP, 0) 

~ 2e-i1T/3 Nt (Tr. - O)t exp (2MP) f (_I)m ~ (a~)-2 
yM sm 0 m=O" 

X exp { - iA~[(2m + I)Tr - 2i cosh-1 N]} 

x {[(2m + l)Tr - 2i cosh-1 N]Jo[A~(Tr - 0)] 

- i(Tr - 0)J1[A~(Tr - Om, 
o - Ot» y, 0 S Tr. (5.26) 

In particular, for Tr - 0» IX-I, this becomes 

f~.reiP, 0) 
ll. t 

-i11/3 N • ( y ) ~e ---
M Tr sin 0 

x exp (2MP){~ (a~)-2(0 - 2i cosh-1 N) 

X exp [-iA~(O - 2i cosh-1 N) - i(Tr/4)] 
00 

+ ~ (_I)m ~ (a~)-2[(2mTr + 0 - 2i cosh-1 N) 
m=1 n 

x exp [-iA~(2mTr + 0 - 2i cosh-1 N) - i(Tr/4)] 

- (2mTr - 0 - 2i cosh-1 N) 

x exp [-iA~(2mTr - 0 - 2icosh-1 N) + i(Tr/4)]]}. 

o - Ot» y, Tr - 0 »1X-
1

• (5.27) 

By comparing these results with (5.20)-(5.22), we 
see again, as for (4.48), thatf~.re8(P, 0) is exponentially 
small and may therefore be neglected. For N < 1, we 
shall see that the situation is just the reverse; (5.26)­
(5.27) represent the analytic continuation of the 
results for that case. 

Finally, let us remark that the damping factor for 
the least strongly damped terms in (5.22) is propor­
tional to [cf. Eq. (3.29)]: 

exp (-1m A",t.o) "-' exp [-(.j3/2)x..(O - 0t)/Y], 

so that the residue series is rapidly convergent for 
0- 0t» Y. 

C. Bebavior for N > 1 in the Lit Region 
(6t - 6» y) 

In this region, we employ the representation (5.11), 
where the integral is to be evaluated by the saddle­
point method. For this purpose, the path of integra­
tion is first deformed from (- 00 + iE, 00 - iE) 

into a new path r from -poo to poo, symmetric 
about the origin, one half of which is shown in Fig. 
14(a). This brings it closer to the steepest descent 
path, represented by the curve in broken line in Fig. 
14(a), which will be discussed below. [The steepest 

descent path crosses the real axis between A = 0 and 
A = p, at an angle of -Tr/4, as will be seen later. 
It must curve away from the imaginary axis as 
IAI--+ 00, to get into the regions where the integrand 
goes to zero [cf. Fig. 14, where an additional factor 
em has to be introduced, corresponding to 

Its exact shape in the intermediate region is difficult to 
determine and need not be considered here.] 

In this process, we sweep across poles A~ and -A~ 
with the lower and upper halves of the contour, 
respectively, so that (5.11) becomes 

11(P, 0) = it.uCP, 0) + h.re.(P, 0) + l~.re.(P, 0), (5.28) 

where 

!t.uCP, 0) = - ~ Ir U(A, P)Qi~t(cos O)A dA, (5.29) 

h.re.(P, 0) = - 2Tr i (-lr ~ residue 
P m=O n 

x {AUP;._t(cos O)exp [2i(m + I)TrA]};.", 

(5.30) 

n.reiP, O) 

2Tr 00 

= - - ~ (_I)m ~ residue 
P m=O n 

X {AUP;._t(cos 0) exp [2i(m + I)TrA]}_;. ... 

2 . "0 
+ ~ ,!residue {AUP;._t(cos 0) tan (TrA)}_;. ... , 

P ,,=1 
(5.31) 

where the last term in (5.31) is the sum of the contri­
butions from the 2no poles swept by the upper and 
lower halves of the contour together, and we have 
made use of (5.12). 

The residue series (5.30) differs from (5.7) only by 
the substitution 

iP;.-t( -cos 0) --+ eidP;._t{cos 0). 

Accordingly, (5.20) is replaced by 

h.re.(P' O) 

2ei1T 
/3 ( 0 )t 00 

~ - -. - exp (2iMP) 2 (_I)m ~ (a~r2 
yM sm 0 m=O" 

X exp {iA,,[(2m + 2)Tr - 0t]} 

x {[(2m + 2)Tr - 0t]Jo(A"O) + iOJ1(A"O)}, 

Ot - 0 »y, 0 ~ O. (5.32) 
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In particular, for () » fJ-l, this becomes 

.h. resCfJ, () 

~ _ e
i
"/3(_Y_)!exp (2iMfJ)· 

M 7T sin () 

co 

X ~ (_1)m ~ (a~)-2['tm exp (iAn'tm - i( 7Tj4» 
m=l n 

+ '1.m exp (iAn'1.m + i( 7Tj4»], 

()t - ()>> y, ()>> fJ-1
• (5.33) 

This differs from (5.22) only by the omission of the 
series in 'to' which would not converge rapidly in 
this region. Physically, this omission corresponds to 
the fact that, in order to reach a direction () in the lit 
region, a surface wave excited at T~ (Fig. 15) must 
describe an angle ~tl = 27T - ~to' rather than ~to' 

In the last residue series of (5.31), we can apply the 
approximation 

tan (7TA) ~ i, 

valid in the neighborhood of the poles - A~. We then 
find 

1~.re8(fJ, () 
1. () ! 

~ _2ei1T / 6 Na (_) 
yM sin () 

x exp (2Mf1){il( _1)m ~ (a~)-2 

X exp [-iA~(2m7T - 2i cosh-1 N)] 

x [(2m7T - 2i cosh-1 N)Jo(A~e) - j()Jl(A~e)] 

no 

+ i ~ (a~)-2 exp (-2A~ cosh-1 N) 
n=l 

x [2 cosh-1 NJo(A~e) + eJl().~e)], 
et - e »y, e ~ 0, (5.34) 

which is again negligible as compared with lues(fJ, e) 
[cf. Eq. (5.27)]. 

Finally, let us evaluate!t./f1, e). The integral (5.29) 
has a saddle point on the real axis, between). = 0 and 
A = fJ, so that we may employ asymptotic expansions 
for the integrand similar to those employed in connec­
tion with (4.31). With the change of variables 

A = fJ sin WI = ex sin W 2 , (5.35) 

we find 

AuCf1, e) = _2ei1T
/
4N (~)!fB(Wl' fJ, e) 

7T sm e 
X exp [ifJb(wl , e)] dwl , (5.36) 

where 

b(wl , e) = 2[N cos W 2 - cos WI 

+ (W2 - WI + ej2) sin WI], (5.37) 

B(wl , (3, e) 

(sin WI)! cos2 
WI cos W2 

(N cos W 2 + cos WI)2 

X {I + l[ 1 (1 + t tan2 
WI) 

f1 4 cos WI 

1 (1 + l!. t 2 ) tan
2 

W2 3 an W 2 ---
4N cos W 2 cos2 

WI 

X (N cos W2 - cos WI) - c~t () ] + (')({J2)}, 
8smw i 

(5.38) 

and the path of integration is the image of r [Fig. 
14(a)] in the WI plane. 

Taking into account the relation 

(5.39) 

we find from (5.37) that the location of the saddle 
point is determined by 

li\ = ()I, w2 = e2 , (5.40) 

where 
()I - e2 = ej2, sin el = N sin e2. (5.41) 

The corresponding saddle point in the A plane is 

x = kp = {3 sin ()l , (5.42) 

where p is the impact parameter of the incident ray 
AB (Fig. 16) which, after two refractions (angles 
el , ( 2) and no reflection, emerges in the direction e, 
according to the laws of geometrical optics. 

It is possible to solve (5.41) to express sin el 

directly in terms of (): 

sin el = (NjT) sin (ej2), (5.43) 

p 

A -----::T'~. 

FIG. 16. Physical interpretation of the saddle point (5.42). BCP is 
the directly transmitted ray corresponding to the incident ray AB ac­
cording to geometrical optics. The impact parameter associated with 
this ray is OE = P = Xlk = a sin 0" where 0 =2(0. - O.)(N > I). 
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where 
T = (1 - 2N cos (Oj2) + N2)f. (5.44) 

The steepest descent path crosses the real W 1 axis at 
an angle of -7Tj4. The corresponding path in the A 
plane is represented by the curve in broken line in 
Fig. 14(a). 

The saddle-point evaluation of (5.36) can now 
proceed by applying (4.34). A straightforward but 
rather lengthy calculation finally leads to the result 

J; ({3 0) = _ (Sin (1)f (2N cos 01 cos (2)tt 
1.g , sin 0 (cos 01 + N cos ( 2)2 

where 

exp [2i{3(N cos O2 - 'Cos (1)] X . 
(N cos O2 - cos 01}t 

X {I _ i:F(O) + O({3-2)}, 
16{3 cos ()1 

Ot - () » y, (5.4S) 

:F(O) = 2 cot 01 cot 0 - - --[
cot 01 J 9 

2(1 - X) 1 - X 

+ ISX - 6 + (X - 1)(8X2 + 5X + 8) tan2 
()1' 

(S.46) 
and [cf. Eq. (5.39)]: 

X = cos 01j(N cos OJ. (5.47) 

Let us now discuss the domain of validity of (5.45). 
It must clearly fail near the shadow boundary, 
0--+ 0t, because the Debye asymptotic expansions for 
Hl1.2)({3) employed in (5.36)-(5.38) are then no longer 
valid. We must have (3 - X» (3l. According to (5.41), 
this implies 0t - 0» y, which is the condition given 
in (5.45). The same condition is found from the 
requirement that the first correction term :F(O)j {3 cos ()1 

in (5.45) must remain small as ()1 approaches 7Tj2. 
At the other extreme, near 0 = 0, the derivation of 

(S.45) is again unjustified, because the asymptotic 
expansion N, Eq. (C7), for Qi~f(COS 0) in (S.29) is no 
longer valid. However, it is found that (5.45) ap­
proaches a finite limit as 0 --+ 0, namely, 

2N2 
f1.i{3,0) = - (N _ 1)(N + 1)2 exp [2i(N - 1){3] 

X {I + i[1 _1 + 1 J + O({.r2)}. 
(3 N 2(N - 1) 

(S.48) 

The proper way to evaluateh.g({3, 0) near 0 = 0 is to 
apply the transformation (5.13) to (S.29), to substitute 
p;._!(cos 0) by N, Eq. (C9), expanding the integrand 
around A = 0, from where the dominant contribution 
arises, and to employ the techniques developed in N 

(Sec. IX.C and Appendix F). The result for 0 = 0 is 
identical to (5.48), showing that (5.45) is, in fact, 
uniformly valid down to 0 = 0 [a similar situation 
was found for (4.35)]. 

The result (5.45) depends implicitly on 0 through 
(S.41). The dependence can be made explicit with the 
help of (5.43). The final result is 

ki{3, 0) 

= 
2N2 

(N2 _ 1)2 
3 

[(N cos (Oj2) - 1)(N - cos (Oj2»F exp (2iT{3) 
X "-'-----'--'--'------'--'---.-----'--'---'-~ -...::-..;'--'-' 

(cos (Oj2»! T2 

X {1 _ iT [2(N cos (Oj2) - 1) 
16{3(N cos (Oj2) - 1) N sin (Oj2) 

X cot - ---~-:------~-
( 

() (N cos (Oj2) - l)(N - cos (Oj2») 
2T2 sin (Oj2) 

- _9_ + 15X - 6 + 8(X - 1) 
I-X 

X ( 2 +.Ii + 1) N
2 

sin
2 

(Oj2) J + O(R-2)} 
X sX (N cos (Oj2) _ 1)2 t', 

Ot - 0 » y, 0 ~ 0, (5.49) 

where T is given by (S.44) and [cf. Eq. (5.47)] 

N cos (Oj2) - 1 (S.50) 
X = N(N - cos (Oj2» . 

The dominant term, represented by the factor 
outside of the curly brackets, agrees with the result 
found by Rubinow [Ref. 12, Eq. (53)]. As observed 
by Rubinow, the corresponding contribution to the 
differential scattering cross section, 

(:~)1 = a
2 

If1.g({3, 0)1
2 

4a2N 4 

cos (Oj2)(N2 - 1)4 

X [(N cos (Oj2) - l)(N - cos (Oj2))]3, (5.S1) 
(N2 - 2N cos (Oj2) + 1)2 

differs from the prediction of classical mechanics for 
square-well scattering only by a factor 

t = (T21 T12)2 

[ 
2 cos 01 2N cos O2 J2 

= (cos 01 + N cos ( 2) (cos 01 + N cos ( 2) 

16N2 

= . [(N cos (Oj2) - 1)(N - cos (Oj2»]2, 
(N 2 _ 1)4 

(5.S2) 

which represents the transmissivity of the well (T21 
and T12 are given by the well-known Fresnel formulas). 
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However, it must be kept in mind that this is by no 
means the .only quantum effect: there are other contri­
butions to the differential cross section from the 
remaining terms of the Oebye expansion (in particular, 
from the forward diffraction peak in /0), as well as 
interference terms. 

D. Behavior for N > 1 in the Penumbra Region 
(Ill - Iltl ..; y) 

Let us now go over to the transition region (ii) 
of (S.3), 10 - 0tl ..; y (penumbra). In this region, as 
was mentioned following (S.47), the above evaluation 
of f1.g({J, 0) breaks down, because the Oebye expan­
sions for Hi1.2)({J) employed in (S.36)-(S.38) are no 
longer valid. With this single exception, all the results 
derived in Sec. SC remain valid in the present region, 
so that we only need to consider h. g • 

Since the dominant contribution to (5.29) in the 
penumbra region arises from the domain IAI - (J = 
()(fJi), the appropriate expansions for Hl1.2)(fJ) in 
(3.24), as well as for [1 {J] and [2 (J] in T2lTU' are 
those given in Appendix A and already employed in 
Sec. 40. We shall keep only the dominant term in each 
expansion. For Hi2)CfJ)/Hi1)C{J), the result is given by 
(4.S4); for T21 , by (3.5) and (4.S8), and we find 

(5.53) 
Finally, we get 

e5i1T/12y 

fl.ifJ, 0) !":::! - 17{JM(217 sin O)t 

X fexp [2i«cl - ).2)! - A cos-1 (A/rx» + iAO] J-X dA , 
A 2m 
(5.54) 

where ~ and Am are given by (4;5S) and (4.56), 
respectively. The path of integration in the ~ plane is 
chosen to be the same as in (4.65)-(4.66), so that the 
dominant contribution arises from I ~I ..; 1. Accord­
ingly, the integrand may be expanded around A = fJ. 
This leads to the final expression 

J; (fJ, 0) !":::! -2 e
itr

/
4 

exp [2iMfJ + ifJ(O - Ot)]fCs) 
1.g M (217fJ sin O)! ' 

10 - Otl ..; y, (5.55) 
where 

(S.56) 
and 

f(s) = e
itr

/
6 r exp (isO d~ (5.57) 

217 Jr A2m 
is the Fock function already defined in N [Eq. (8.23)]. 
The path r runs from e 2i1T /3 00 to 0 and from 0 to 00 

(cf. N, Fig. 10). 

Thus, we find a normal (Fock-type) transition from 
light to shadow, described by f(s). In the shadow 
region, s » 1, (5.55) becomes, according to N [Eq. 
(8.24)], 

f1j{J,0) 

e
ilT

/
12 

( y )! 
!":::! - - -.- exp(2iMfJ) 

M 17 sm 0 

X ~ (a~)-2(0 - 0t) exp [i({J + eitr
/
3xn/Y)(0 - 0t»), 

n 
o - Ot »y, (5.58) 

which, according to (3.29) and (5.23), corresponds 
to the residue series in ~to in (5.22) as it should 
[see the remarks following (S.33)]. 

On the other hand, for s < 0, lsi» 1, the Fock 
function (5.57) can be evaluated by the saddle-point 
method, with the following result: 

f(s) !":::! J; e-i1T
/
4 Isl! exp [-(i/12)s3], 

s < 0, lsi» 1. (5.S9) 
Substituting this in (5.55), we find, in the lit region, 

fl.i{J,O) 
(Ot - O)! 

!":::! - M(sin O)! 

X exp {2iM(J - i{J[(Ot - 0) - .h(Ot - 0)3]}, 

Ot - 0 »y. (5.60) 
Again, this agrees with the dominant term of (5.49), 
provided that, as in previous cases, we do not try to 
push the Fock-function representation too far into the 
lit region: its s\omain of validity is just sufficient to 
produce a smooth transition. 

Finally, since f(O) = 1 [cf. N, Eq. (8.26)], we find, 
at the shadow boundary, 

ei1T/ 4N 
fl y({J, 0t) !":::! - ! 3 exp (2iMfJ). (5.61) 

. (17{J) M2 

This completes the evaluation of the second term 
of the Oebye expansion for N > 1. 

E. Behavior for N < 1 

For N < 1, according to Fig. 13(b), we again have 
to consider three regions: shadow, penumbra, and lit 
region, defined precisely as in (S.3) [however, 0t is 
now given by (4.76)1]. We shall see that the width of 
the penumbra region is given by 

D.O ,..." y' = (2/rx)i = YIN!. (5.62) 

Let us consider first the shadow region, 0 - 0 t » 
y'. The amplitude is again a pure residue series, given 
by (5.6)-(5.8), and the evaluation of the residues again 
proceeds according to (5.17)-(5.19). For fLres({J, 0), 
the main difference with respect to (5.26) is that 
Hi1•2 )({J) is now given by N, Eq. (AI6). Accordingly, 
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the result differs from (5.26) only by the substitutions 
[cf. Eqs. (4.46) and (4.81)]: 

M --+ -iM', 

Thus, we find 

n.res(f3, () 

cosh-1 N --+ -i cos-1 N = -i()tI2. 

(5.63) 

. 16 N
2 

(7T _ ())* 
R::::I 2e'''' -- --. - exp (-2iM'f3) 

y'M' Sill () 

00 

X ! (_1)m ! (a~)-2 exp { - iA~[(2m + 1)7T - ()t]) 
m=O n 

X {[(2m + 1)7T - ()t]Jo[A;.(7T - ()] 
- i(7T - ())Jl[A~(7T - ())], () - ()t »y', () ~ 7T. 

(5.64) 
[The evaluation of the dominant term in the residue­
series contribution at the poles A~ for an arbitrary 
term of the Oebye expansion will be carried out in 
Paper II (Appendix D).] 

In particular, for 7T - ()>> IX-I, we find [cf. Eq. 
(5.27)] 

n.res(f3, () 
e-i17/12N2( y' I 

R::::I -.-)eXP (-2iM'f3) 
M' 7T sm () 

X {~(a~)-2'to exp (- iA~'to) + JI (_1)m ~ (a~)-2 

X ['t.m exp ( - iA~'t.m) - i'l.m exp ( - iA~'l.m)]}, 
() - ()t» y', 7T - () »1X-

1
. (5.65) 

By comparing this result with (4.82), we see that it 
can be rewritten as follows: 

f~.re'(f3, () R::::I 2ei1f14 N
2
( 2~ )lexp (-2iM'f3) 

M' Nf3 sm () 

X {~~n'to exp (-iA~'to) 
00 

+ ! (_1)m 2 [~n't.m exp (- iA~'t.m) 
m=l n 

- mn'1.m exp (-iA~'1.m)]}' 
() - ()t »y', 7T - () » IX-I, (5.66) 

where 
~n = e-i1T13/27Ta~2y'. (5.67) 

Each term in (5.66) differs from the corresponding 
term in (4.82) only by a factor 

r'l.m± 
~n't.m = ~nJo dq;. (5.68) 

This result can be physically interpreted as follows 
[Figs . .11 (a) and 17]. The diffracted rays shown in Fig. 
Il(a) travel along the inner side of the surface, so that 
they cannot make any "shortcuts" such as those 
found for N> 1 (Fig. 15). Their only possible 
interaction with the surface is to produce a ray in the 
exterior region leaving the surface at the critical angle, 

FIG. 17. Physical interpretation of the diffracted rays in (5.66); 
SlS~SlUl is a typical diffracted ray of this class. 

such as S~Ul in Figs. l1(a) and 17. Each time a 
surface wave associated with the first term of the 
Oebye expansion does this, it excites further surface 
waves by a kind of "internal diffraction," and these 
are precisely the contributions found in (5.66). They 
have had one additional interaction with the surface 
as compared with (4.82), in agreerri'ent with the general 
physical interpretation of the Oebye expansion given 
in Sec. 3A. We see that ~n represents the internal 
diffraction coefficient. 

A typical diffracted ray of this class is SlS~S;U~ 
in Fig. 17. The angle q; described by the "parent" 
surface wave up to the point of excitation S~ can take 
any value between 0 and 'tm' so that we again have an 
infinity of possible paths and must sum all their 
contributions. This leads to the integral in (5.68) 
[cf. the similar discussion for (5.24)]. 

To obtain the contribution from the residue series 
at the poles .An, it suffices to analytically continue 
(5.22) to N < 1, by making the substitutions 

M --+ -iM', 

This leads to 

fl.resCf3, () 

-1 1 . h-I 1 cos - --+ - I cos - . 
N N 

R::::I _ ei"'/3(_~_)lexp (2M'f3) 
M' 7T sm () 

X (~(a~)-2«() + 2i cosh-1 (liN» 

X exp [i.An«() + 2i cosh-1 (II N»] 

(5.69) 

+ J/ _1)m ~ (a~)-2{(2m7T + () + 2i cosh-1 (liN» 

X exp [iAn{2m7T + () + 2i cosh-1 (lIN»] 
+ i(2m7T - () + 2i cosh-1 (liN» 

x exp [i.An(2m7T - () + 2i cosh-1 (lIN))]}), 

() _ ()t» y', 7T - ()>> IX-I. (5.70) 
These terms play the same role here that (5.27) 

played for N > 1. We can regard them as arising from 
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refraction of the surface waves excited by the tangen­
tially incident rays (Fig. 9), which, as we have seen in 
Sec. 4E, are still given by (4.41) for N < 1. However, 
this is refraction with grazing angle of incidence, i.e., 
well beyond the critical angle, so that the correspond­
ing angle of refraction is complex, corresponding to 
evanescent waves in the optically rare medium, as in 
total reflection. This gives rise to strong damping and 
makes (5.70) exponentially small, and therefore 
negligible, in comparison with (5.65), which, con­
sequently, describes the total amplitude in the shadow 
region. 

Thus, for the second term of the Debye expansion, 
the poles An and A~ interchange their roles as we go 
over from N> 1 to N < 1. For N> 1 (N < 1), the 
contribution from the poles An(A~) is dominant, and 
that from the other set of poles is exponentially small 
in comparison, although both contributions can be 
analytically continued in N from one case to the other. 
The two sets of poles play complementary roles, and 
A~ is just as important for N < 1 as An is for N > 1. 

Let us consider next the lit region, 0t - 0» y'. In 
this region, we must employ the representation 
(5.15)-(5.16) instead of (5.11)-(5.13). In order to 
apply the saddle-point method, the path of integration 
in (5.15) is first deformed into the path r shown in 
Fig. 14(b). In this process, it sweeps across poles An 
and -An (say 2no of them), so that we get [cf. Eq. 
(5.28)] 

il((3, 0) = il.U<{J, 0) + h.res({J, 0) + n,re.({J, 0), (5.71) 
with 

Ai{J, 0) = - ~ Ir U(A, (J)Q~~!(cos O)A dA, (5.72) 

h.re.({J, 0) 

= 27T {-i !residue [AUP,a_!(cos 0) tan (7TA)],an 
{J n=l 

+ i} _l)m ~ residue [AUP,a_!(cos O)e2
i!m+l) .. ,a],a.} 

(5.73) 
n. re.({J, 0) 

27T 00 

= - I ( _l)m I residue 
{J m=O n 

X {AUP,a_!(cos 0) exp [2i(m + l)7TA]}_,an" (5.74) 
We now find 

n.re.({J, 0) ! 

<=::::I 2ei 
.. /

6 N
2 
(~) exp (-2iM'{J) 

y'M' sm 0 
00 

x I (-lr I (a~)-2 exp {-iA~[2(m + 1)7T - OJ]} 
m=O n 

X {i[2(m + 1)7T - Ot]Jo(A~O) + OJ1(A~O)}, 
0t - 0» y', 0 ~ O. (5.75) 

- i~I:m exp (- iA~~I:m)]' 

Ot - 0» y', 0» eel, (5.76) 
which differs from (5.65) only by the omission of the 
series in ~i.o' as it should [see the comments following 
(5.33)]. 

On the other hand, 

h,rc.({J, 0) 

2ei 
.. /

12 
( 0 )! 

<=::::I -- -, - exp (2M' (J) 
yM' sm 0 

x {%1(a~)-2 exp (-2An cosh-1 (liN» 

x [2 cosh-1 (1/N)JoO.nO) + OJ1(AnO)] 
00 

+ L (_1)m I (a~)-2 
m=l n 

X exp (2im7TAn - 2An cosh-l (liN» 

x [(2im7T - 2 cosh-1 (1/N»Jo(AnO) - OJ1(AnO)]}, 

Ot - 0» y', 0 ~ 0, (5.77) 
which is negligible in comparison withl~,re8({J, 0). 

Finally, let us consider the "geometrical-optic" 
contribution ft,uC{J, 0), given by (5.72). This differs 
from (5.29) by having Qi~! instead of Qi~! and by the 
different path of integration. With the same change of 
variables (5.35), the saddle point is found to be 
determined by [cf. Eqs. (5.40) and (5.41)]: 

(5.78) 
where 

(5.79) 

This agrees with the laws of geometrical optics for 
N < I (01 < (2), and it is the reason why it was 
necessary to employ the representation (5.15) instead 
of (5.11). 

The steepest descent path now crosses the real axis 
at an angle of 7T/4 [Fig. 14(b)]. Thus, we have to 
employ N, Eq. (6.12), rather than N, Eq. (6.21). 
Making appropriate changes in the calculation that 
led to (5.45), we finally obtain 

{J 
0 _ (Sin Ol)! (2N cos 01 cos (2)i 

AU< , ) - . 0 ( 0 + N 0 )2 sm cos 1 cos 2 

exp [-2i{J(cos 01 - N cos ( 2)] X ~~-~-~---.~~ 
(cos 01 - N cos oi 

X {I _ i:F(O) + ()(P-2)}, (5.80) 
16{J cos 01 
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where 

:F(O) = 2 cot Ol[ cot ()l - cot oJ + _9_ + l5X - 6 + 8(X - l)(l + h + 1) tan2 01 , (5.81) 
2(X - 1) X-I 

and X is still given by (5.47). 
With the help of (5.43), this result can also be expressed directly in terms of the angle O. We find 

{J 
2N2 [(1 - N cos (O/2»(cos (0/2) - N)]! exp (-2iT{J) 

fl.i ,() = (1 _ N 2)2 (cos (OI2»! 1"2 

x (1 _ i1" f2(1 - N cos (012»[(1 - N cos (OI2»(cos (012) - N) _ cot oJ 
16P(1 - N cos (012» N sin (012) 21"2 sin (0/2) 

+ _9_ + 15X _ 6 + 8(X _ l)(l + h + 1) N
2 

sin
2 

(012) } + ()(P-2») , 
X-I (1 - N cos (0/2»2 

where 1" and X are again given by (5.44) and (5.50), 
respectively. The result is also uniformly valid down 
to 0 = O. It differs from (5.49) only by the over-all 
sign factor and by the replacement 1" -- -1". This 
gives the correct continuation for N < 1, as can be 
verified by checking that, for 0 = 0, Eq. (5.82) 
becomes identical to (5.48). 

The last region that remains to be considered is the 
penumbra region, 10 - 0tl >( y'. In this region, we 
must employ the expansions of Appendix A for 
Hl1.2'(oc). By a procedure entirely similar to that which 
led to (5.55), we find 

;i 

I' ({J 0) ~ 2e-irr/4 N2 
Jl,g , M' 

where 

X exp [-2iM',8 - iN,8(O - Ot)]j(s'), 
(27T,8 sin O)! 

10 - Otl >( y', (5.83) 

s' = (oc/2)tCO - 0t) = (0 - 0t)/y' (5.84) 

Ot - 0» y', 0 ~ 0, (5.82) 

smooth transition between shadow and lit region. 
Note that it is a normal (Fock-type) transition, 
similar to that found for N > 1. This behavior differs 
from that found in the same region for the first term 
of the Debye expansion [cf. Eq. (4.101)]. As has 
already been mentioned, all terms in the Debye 
expansion give rise to the same transition region for 
N < 1, so that the behavior of the complete amplitude 
within this region is quite complicated. 

This concludes the discussion of the behavior of the 
second term in the Debye expansion. We see that the 
modified Watson transformation indeed enables us to 
determine the high-frequency behavior of the first 
two terms in any direction 0, both for N> 1 and 
for N < 1. The behavior of the remaining terms will 
be discussed in Paper II. 
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APPENDIX A: ASYMPTOTIC EXPANSIONS FOR THE POLES AND AUXILIARY FORMULAS 
FOR THE COMPUTATION OF RESIDUES 

The following asymptotic expansions for H10(x), H~(l)(X), valid when IA. - xl = ()(x1), x» 1, have been 
derived by SchObe41 : 

H~l)(X) = 2e-i7r /3 (~)t .i C _1)n (~)2n/3 [P nW Ai (- c;) - e-irr /3QnW Ai' (-m, 
x n~O X 

(AI) 

H~(l)(x) = _2e-irr/3(~)f.i (_1)n(~)2n/3[Pn(c;) Ai (-;) - e-irr/3Qn(;) Ai' (-~)], 
x n~O X 

CA2) 

41 W. Schobe, Acta Math. 92, 265 (1954). 
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PoW = 1, 

P1($) = ei1f /3.l , 
15 

P (;) _ e-i1f/3(~ _ 13$2) 
2 - 7200 1260' 

PoW = 0, 
_ $3 . 1 
P1W = - 60 - 10' 

P (;) = _ei1f /3(L + I) 
2 3360 60' 

QoW = 0, 

Q ($) = _e-i1f /3 ;2 
1 60' 

e 1 
Qz(;) = - 420 + 140 ' 

(?o($) = 1, 

{2t(;) = _e
i1f

/
3 /5 ' 

Q W = e-i1f/3(~ + 1ge). 
2 7200 2520 

121 

(A3) 

(A4) 

(A5) 

The corresponding expansions for Hi2)(x), H~(2)(X) are obtained by changing the sign of i everywhere in the 
above expressions. 

By employing a slightly different version of these results, Streifer and Kodis28 found the following improved 
asymptotic expansion for the poles (3.29): 

An = (J + ei1f /3;,,/y, 

where y « 1 [cf. Eq. (2.49)] is the expansion parameter, and 

with Xn defined by (2.54) [nth zero of Ai (-x)], and 

on = _ei1f/3:~y2 - e-i1f/3(1:~0 -1~0)y4 - C~~~~~O -12::0~)y6 

+ i1f/6 Y [1 + i1f/3 Xn (1 + 1) 2 -i1f/3 X; e - e - - y -e -
M 6 M2 20 

(A6) 

(A7) 

(A8) 

where M = (N2 - l)i, as in (2.53). The corresponding result for N < 1 (which was actually the case considered 
in Ref. 28) is obtained by the substitution (3.30): M = -iM' = -i(l - N2)~. Notice that on = \')(y), so that 
10nl « 1. 

The first three terms of (A8), which do not depend on N, correspond to the Regge poles [N, Eq. (3.5)] for 
an impenetrable sphere, i.e., the roots of H?)({J) = O. They can formally be obtained by letting N -+ ioo, 
corresponding to an infinitely high potential barrier. The remaining terms in (A8) represent the effect of a 
finite refractive index. 

For the evaluation of the residue series appearing in the first three terms of the Debye expansion, the values 
of Hi1)({J), H~(l)({J) and their derivatives up to third order with respect to A, taken at the poles An' are required. 
The correspondiI!g asymptotic expansions may be obtained from (Al)-(A5) with the help of the following 
formulas, which follow from (A3): 

~ = e-i1f /3y, A = _e-i1f /3yA', A' = e-i1f /3y;A, (A9) 

where the dots denote partial derivatives with respect to A and we have introduced the abbreviations 

A = Ai (-$), A' = Ai' (-;), ; = e-i1f /3Y(A - (J). (AIO) 
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We then find the following results: 

H(I)(f3) = 2e-i1f13Y{A + y2 i1t13(r A' _ M) + y4 e-i7t/3[! (r _ l)AI + r(~S _ 13)AJ + O(y6)} 
J. IS 4 20 7 3 9 40 7 ' 

H~(lJ(f3) = _2i1f/3y2{AI + ;; ei1f/3[~AI - (~ + ~)A] 

+ ;~ e-i1f!3[~(;: + 1;)A' - ~(;: + I)AJ + O(y6)}. 

fli1l
(f3) = 2ei1f/3y2{AI - ;; e

i1f
/3[; A' + (~ - 1)A] 

-:s~ e-i7t/3[~2e72 - !:)AI + $G~ t - S)A ] + O(l)}. 

fI~(l)(f3) = _2y3{~A + :~ ei1f/3 [ (;3 + S)A1 + ;2 A] 

+ y4e_i1f/3[10 $(~3 + 4)AI + (L + !. ~3 _ I)AJ + O(y6)} 
60 21 8 120 21 • 

jj~ll(f3) = 2y3{~A + :~ ei7t/3
[ (~ - S)A

1 
- ~ ~2AJ 

_ L e-;1f13[f.(79 _ ~ $3) A' _ (~6 _ 7S t + S)AJ + O(y6)} 
180 7 4 40 14 • 

H~(ll(f3) = 2y4 e -i"/S{ ~A' - A - :~ i"/S[ ~2A' + ~ (~ + 6) A ] + O(y4)} , 

H~l)(f3) = _2le-i1f/3{~A' - A - :~ ei1f
/3[ 6$2A' - ~(14 - ~)AJ + O(~4)}, 

'jj~(ll(f3) = _ 2y5ei1T13{2A' + ~2A + :~ ei1fIS[~(~ + 4)AI - 3(;3 + 2)A] + OCy4)}. 

(All) 

(AI2) 

(A 13) 

(A14) 

(A1S) 

(A16) 

(A17) 

(AIS) 

To evaluate these expressions at the pole An. it suffices to replace $ by ~n' which is given by (A7)-(A8). 
Since I~nl « 1, the Taylor expansion of the Airy functions around ~ = Xn may be employed, with the results 

A = Ai(-$ ) = ~ a' (1 _ Xn ~2 + l~3 + x~ ~4 _ ~ ~5 + ... ) 
n n n n 6 n 12 n 120 n 120 n , 

(A19) 

A' = Ai' (_~ ) = a' (1 _ Xn ~2 + 1~3 + x~ ~4 _ Xn 0' + ... ) 
n n n 2 n "3"n 24 n 20 n , 

(A20) 

where a~ = Ai' (-xn), as in (4.40), and we have employed the differential equation of the Airy functions, 

Ai" (z) = z Ai (z). (A2l) 

The denominator that gives rise to the poles is [cf. Eq. (4.38)]: 

dCA, (3) = [1 f3] - N[2 (X] (A22) 

and the value of its partial derivatives with respect to .4., up to third order, at the poles An is also required for 
the evaluation of residues. 

In the neighborhood of the poles, we have, by N, Eq. (Al6): 

[2 otl = _ i (N
2 

- (

2

)! . ~y3 ~ + O(y6), (A23) 
N 4(N - w 
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where 
OJ = A/fJ. (A24) 

The partial derivatives of [2 oc] with respect to A can be readily evaluated from this expression. Those of [1 fJ], 
on the other hand, can be expressed in terms of (All)-(AI8) by means of the following formulas: 

[t"fJ] = H~l~(fJ) {fI~(l\fJ) - [1 fJ]H~l)({J)}, (A25) 

'(1) 

[l
OO

fJ] = _1_ {ii,(l)(fJ) _ [1 fJ]ii(l)(/~)1 _ 2 H" (fJ) [t'R] 
Hi1)({J) " " I" J Hi1 )«(3) {J, 

(A26) 

", 1 '(1) "(1) 

[1 (3] = -- {iir(l)«(3) - [1 fi)ii w«(3)} - 3 H" (fJ)[l"fJ) _ 3 H" «(3) [((3) (A27) 
Hil)({J) " A H~l)(fJ) Hil)({J) ' 

where, at the poles, [1 fJ] can be computed from (3.27) and (A23): 

[1 (3)"n = N[2 oc]"n • (A28) 

APPENDIX B: ASYMPTOTIC BEHAVIOR OF 
THE SPHERICAL REFLECTION AND TRANS­

MISSION COEFFICIENTS 

We collect in this appendix the main results required 
in the text about the asymptotic behavior of SeA, fJ) 
and of the spherical reflection and transmission 
coefficients (3.4)-(3.8) as \A\ --+ 00. The derivation is 
omitted: it is based upon the formulas for the asymp­
totic behavior of cylindrical functions given in N 
(Appendix A). 

The results are presented graphically in Figs. 18-21. 
The expression given in each region of the A plane 
represents the asymptotic behavior of the corre­
sponding function in that region. Inessential factors, 
such as constants, are omitted. 

The notation is the same as in N (Appendix A): 
when \A\ --+ 00 along directions approaching the 
positive or negative imaginary axis, we take, respec­
tively, 

A = ±a \A\, a = exp [i(1TJ2 + E»), (Bl) 

1m). 

i 
~ 1 / 

••••• '> •• •• ·.·.·o.I·.-.. ·.--:7,L .. , ~ '·(!-2~)''.....O 
"'_ .... _.:f_ to'- -f./ )-".... ----,./1. ,,-r 

/1 \ Re X-+ 

, 

'. , 

and we define 

nl = €In \ ~~ \' rJi = € In \ ~~ \. (B2) 

The asymptotic behavior of SeA, fJ) is given in Fig. 
18, and that of all the spherical reflection and trans­
mission coefficients can be obtained from Figs. 19 
and 20. Finally, Fig. 21 shows the asymptotic behavior 
of p = Rn Hil )(oc)/Hi2 )(oc), the expansion parameter in 
the Debye expansion [cf. Eg. (3.15)]. 

All the results shown refer to the case N > 1. 
However, it is not difficult to adapt them ·to the case 
N<l. 

APPENDIX C: REDUCTION TO GENERALIZED 
FOCK FUNCTIONS 

To reduce the first two integrals in (4.64) to the 
generalized Fock functions (4.67), we first note that, 
by (4.63), 

(1 + gy2)Jo = ~ :, [(1 + gy2)Jd, 

, . , 
---l>),2e-2;.nA, \ -4 e- lolt).. \ 

,(~)1~O \ ~(-'1)'2~o " 
~p \ Ill'! \ 

\ 

Y/.27-~ . 
,/ 
, 

, 

(Cl) 

FIG. 18. Asymptotic behavior of I - SO., (3) as 1.1.1->- CJJ in different FIG. 19. Asymptotic behavior of T 21(A, (3) = I + R •• (A, (3) as 1.1.1_ 
regions of the A plane. X -poles (N > I). CJJ in different regions of the A plane. X -poles (N > I). 
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1727-1 1.-+-; 
{. 

FIG. 20. Asymptotic behavior of T12(.?, {J) = I + Ru(A, {J) as 
IAI- w in different regions of the A plane. X -poles (N > 1). 

where, unless otherwise indicated, the argument of 
the Bessel functions is always the same as in (4.63). 
We then find, by partial integration, 

e2i1T/3 (0 (1 + t,y2)JO!. d, 
J"100 A 

Y ei1T16 y (0 J 
= e2i1T/3e J1({JO) + 27T 7i J"1 00 (1 + El) A~ d" (C2) 

where the Wronskian relation (4.57) has been em­
ployed. 

A similar transformation can be performed for the 
second integral in (4.64), with the help of the Wron­
skian relation [N, Eq. (D2)]. Putting together the 
results, we obtain 

e2i1t/3lo (1 + gy2)JO!. d, 
"100 A 

+ ei1T/3Loo(1 + gy2)JO Ai'> d{ 

= - ~ J1({JO) + ~ [Fo.lUI, 0) + ty2
Fl,l({J, 0)], (C3) 

where Fm .n is defined by (4.67). 
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FIG. 21. Asymptotic behavior of p(A, {J) = Rll(A, {J)Hl11(rx)! 
H121(rx) as IAI - w in different regions of the A plane. Note that Ipl < 
1 along the real axis. x-poles (N > I). 

Similarly, by partial integration, we find 

e-i1T161 A' v 0 -- ---; J o dt, = - FO,l({J, 0). 
27T rA 2y 

(C4) 

It follows from the differential equation (A2I) of the 
Airy functions that 

A,2 = l.e2i1T /3 .I _ .!!.... (A'). (C5) 
A4 3 A2 3 d, A3 

Thus, by partial integration, we get 

~ ( A,2 J d, 
27T Jr A4 0 

= j F1.0({J, 0) + ei1t16 1~:2 [Fo.o({J, 0) - Fo.l{J, 0)], 

(C6) 
where we have employed the relation 

J~ = t(Jo - J2)· 

Finally, we have 

~ 1,2 A~ Jo d, = _ei1t16 [F1.O({J, 0) - ~ F2.1({J, 0)]. 
27T r A 2y 

(C7) 
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